Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 117403    DOI: 10.1088/0256-307X/41/11/117403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
High-Temperature Phonon-Mediated Superconductivity with $T_{\rm c}$ above 100 K in Monolayer Na(BC)$_{2}$ and K(BC)$_{2}$
Wenxuan Chen, Zhengtao Liu, Zihao Huo, Guiyan Dong, Jialiang Cai, and Defang Duan*
Key Laboratory of Material Simulation Methods & Software of Ministry of Education, and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Cite this article:   
Wenxuan Chen, Zhengtao Liu, Zihao Huo et al  2024 Chin. Phys. Lett. 41 117403
Download: PDF(4100KB)   PDF(mobile)(4046KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) materials have demonstrated promising prospects owing to their distinctive electronic properties and exceptional mechanical properties. Among them, 2D superconductors with $T_{\rm c}$ above the boiling point of liquid nitrogen (77 K) will exhibit tremendous applicable value in the future. Here, we design two 2D superconductors Na(BC)$_{2}$ and K(BC)$_{2}$ with MgB$_{2}$-like structures, which are theoretically predicted to host $T_{\rm c}$ as high as 99 and 102 K, respectively. The origin of such high $T_{\rm c}$ is ascribed to the presence of both $\sigma$-bonding bands and van Hove singularity at the Fermi level. Furthermore, $T_{\rm c}$ of Na(BC)$_{2}$ is boosted up to 153 K with a biaxial strain of 5%, which sets a new record among 2D superconductors. The predictions of Na(BC)$_{2}$ and K(BC)$_{2}$ open the door to explore 2D high-temperature superconductors and provide a potential future for developing new applications in 2D materials.
Received: 19 August 2024      Published: 14 November 2024
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.-q (Properties of superconductors)  
  74.10.+v (Occurrence, potential candidates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/117403       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/117403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenxuan Chen
Zhengtao Liu
Zihao Huo
Guiyan Dong
Jialiang Cai
and Defang Duan
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[2] Cahangirov S, Topsakal M, Aktürk E, Şahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[3] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, and Wu K 2012 Phys. Rev. Lett. 109 056804
[4] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, and Zhang H 2013 Nat. Chem. 5 263
[5] Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[6] Feng J, Peng L, Wu C, Sun X, Hu S, Lin C, Dai J, Yang J, and Xie Y 2012 Adv. Mater. 24 1969
[7] Yan L M, Ding C, Li M T, Tang R L, Chen W, Liu B Y, Bu K J, Huang T H, Dai D Z, Jin X B, Yang X F, Cheng E J, Li N N, Zhang Q, Liu F L, Liu X Q, Zhang D Z, Ma S L, Tao Q, Zhu P W, Li S Y, Lü X J, Sun J, Wang X, and Yang W G 2023 Nano Lett. 23 2121
[8] Dong L, Wang G Y, Zhu Z, Zhao C X, Yang X Y, Li A M, Chen J L, Guan D D, Li Y Y, Zheng H, Xie M H, and Jia J F 2018 Chin. Phys. Lett. 35 066801
[9] Xie X, Lin D, Zhu L, Li Q, Zong J, Chen W, Meng Q, Tian Q, Li S C, Xi X, Wang C, and Zhang Y 2021 Chin. Phys. Lett. 38 107101
[10] Ichinokura S, Nakata Y, Sugawara K, Endo Y, Takayama A, Takahashi T, and Hasegawa S 2019 Phys. Rev. B 99 220501
[11] Frindt R F 1972 Phys. Rev. Lett. 28 299
[12] Xi X X, Zhao L, Wang Z F, Berger H, Forró L, Shan J, and Mak K F 2015 Nat. Nanotechnol. 10 765
[13] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, and Crommie M F 2016 Nat. Phys. 12 92
[14] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, and Mak K F 2015 Nat. Phys. 12 139
[15] Bao L, Bi Y, Liu X, Yang X, Hao T, Tian S, Wang Z, Li J, and Gu C 2018 Appl. Phys. Lett. 113 022603
[16] Yang Q, Jiang X, and Zhao J 2023 Chin. Phys. Lett. 40 107401
[17] Ichinokura S, Sugawara K, Takayama A, Takahashi T, and Hasegawa S 2016 ACS Nano 10 2761
[18] Xue M, Chen G, Yang H, Zhu Y, Wang D, He J, and Cao T 2012 J. Am. Chem. Soc. 134 6536
[19] Profeta G, Calandra M, and Mauri F 2012 Nat. Phys. 8 131
[20] Lu H Y, Yang Y, Hao L, Wang W S, Geng L, Zheng M, Li Y, Jiao N, Zhang P, and Ting C S 2020 Phys. Rev. B 101 214514
[21] Bekaert J, Sevik C, and Milošević M V 2022 Nanoscale 14 9918
[22] Tsuppayakorn-Aek P, Bovornratanaraks T, Ahuja R, Luo W, and Kotmool K 2023 Phys. Chem. Chem. Phys. 25 2227
[23] Campi D, Kumari S, and Marzari N 2021 Nano Lett. 21 3435
[24] Yin X Z, Wang H, Wang Q H, Jiao N, Ni M Y, Zheng M M, Lu H Y, and Zhang P 2023 Chin. Phys. Lett. 40 097404
[25] Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C, and Xie Y 2019 Adv. Mater. 31 1900568
[26] Zeng S, Zhao Y, Li G, and Ni J 2016 Phys. Rev. B 94 024501
[27] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, and Akimitsu J 2001 Nature 410 63
[28] Choi H J, David R, Sun H, Marvin L C, and Louie S G 2002 Nature 418 758
[29] Kang W N, Kim H J, Choi E M, Jung C U, and Lee S I 2001 Science 292 1521
[30] Xu B Z and Beckman S P 2016 2D Mater. 3 031003
[31] Zhao Y, Lian C, Zeng S, Dai Z, Meng S, and Ni J 2020 Phys. Rev. B 101 104507
[32] Sevik C, Bekaert J, Petrov M, and Milošević M V 2022 Phys. Rev. Mater. 6 024803
[33] Modak P, Verma A K, and Mishra A K 2021 Phys. Rev. B 104 054504
[34] Gao M, Yan X W, Lu Z Y, and Xiang T 2020 Phys. Rev. B 101 094501
[35] Bekaert J, Petrov M, Aperis A, Oppeneer P M, and Milošević M V 2019 Phys. Rev. Lett. 123 077001
[36] Wang Y, Lv J, Zhu L, and Ma Y 2012 Comput. Phys. Commun. 183 2063
[37] Wang Y, Lv J, Zhu L, and Ma Y 2010 Phys. Rev. B 82 094116
[38] Yang L M, Bačić V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, and Ganz E 2015 J. Am. Chem. Soc. 137 2757
[39] Liu C, Song X, Li Q, Ma Y, and Chen C 2019 Phys. Rev. Lett. 123 195504
[40] Song X, Liu C, Li Q, Hemley R J, Ma Y, and Chen C 2022 Proc. Natl. Acad. Sci. USA 119 e2122691119
[41] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, and Shylin S I 2015 Nature 525 73
[42] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, and Ohishi Y 2016 Nat. Phys. 12 835
[43] Gao M, Lu Z Y, and Xiang T 2015 Phys. Rev. B 91 045132
[44] Singh S, Romero A H, Mella J D, Eremeev V, Muñoz E, Alexandrova A N, Rabe K M, Vanderbilt D, and Muñoz F 2022 npj Quantum Mater. 7 37
[45] Yang L, Li Y P, Liu H D, Jiao N, Ni M Y, Lu H Y, Zhang P, and Ting C S 2023 Chin. Phys. Lett. 40 017402
[46] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, and Guisinger N P 2015 Science 350 1513
[47] Margine E R and Giustino F 2013 Phys. Rev. B 87 024505
[48] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, and Cui T 2014 Sci. Rep. 4 6968
[49] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, and Ma Y 2017 Phys. Rev. Lett. 119 107001
[50] Zhai H, Munoz F, and Alexandrova A N 2019 J. Mater. Chem. C 7 10700
[51] Savini G, Ferrari A C, and Giustino F 2010 Phys. Rev. Lett. 105 037002
[52] Yang L, Liu P F, Liu H D, Li Y P, Jiao N, Lu H Y, Wang B T, and Zhang P 2024 Sci. Chin. Phys. Mech. & Astron. 67 217412
[53] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol. 12 744
[54] Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K, Chen Z, Zeng X, Gu X, and Xu J 2021 ACS Nano 15 20319
[55] Liu P F, Zheng F, Li J, Si J G, Wei L, Zhang J, and Wang B T 2022 Phys. Rev. B 105 245420
[56] Si C, Liu Z, Duan W, and Liu F 2013 Phys. Rev. Lett. 111 196802
[57] Dai J, Li Z, Yang J, and Hou J 2012 Nanoscale 4 3032
[58] Zhang J J and Dong S 2017 J. Chem. Phys. 146 034705
[59] Bekaert J, Aperis A, Partoens B, Oppeneer P M, and Milošević M V 2017 Phys. Rev. B 96 094510
[60] Meng X H, Shen Y Q, Lv L L, Zhou M, Yang X, Zhang Y, Pang L, E P, and Zhou Z X 2024 Mater. Today Phys. 47 101532
[61] Zhang Y, Chen J, Hao J, Xu M, and Li Y 2024 Phys. Rev. B 110 064513
Related articles from Frontiers Journals
[1] Xin-Zhu Yin, Hao Wang, Qiu-Hao Wang, Na Jiao, Mei-Yan Ni, Meng-Meng Zheng, Hong-Yan Lu, and Ping Zhang. Superconductivity Modulated by Carbonization and Hydrogenation in Two-Dimensional MXenes $M_{2}$N ($M$ = Mo, W)[J]. Chin. Phys. Lett., 2023, 40(9): 117403
[2] Fang-Jun Cheng, Yi-Min Zhang, Jia-Qi Fan, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Ambipolar Doping of Monolayer FeSe by Interface Engineering[J]. Chin. Phys. Lett., 2023, 40(8): 117403
[3] Peiyi Li, Jiachang Bi, Shunda Zhang, Rui Cai, Guanhua Su, Fugang Qi, Ruyi Zhang, Zhiyang Wei, and Yanwei Cao. Transformation of Hexagonal Lu to Cubic LuH$_{2+x}$ Single-Crystalline Films[J]. Chin. Phys. Lett., 2023, 40(8): 117403
[4] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 117403
[5] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 117403
[6] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 117403
[7] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 117403
[8] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 117403
[9] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 117403
[10] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 117403
[11] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 117403
[12] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 117403
[13] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 117403
[14] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 117403
[15] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 117403
Viewed
Full text


Abstract