CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
High-Temperature Phonon-Mediated Superconductivity with $T_{\rm c}$ above 100 K in Monolayer Na(BC)$_{2}$ and K(BC)$_{2}$ |
Wenxuan Chen, Zhengtao Liu, Zihao Huo, Guiyan Dong, Jialiang Cai, and Defang Duan* |
Key Laboratory of Material Simulation Methods & Software of Ministry of Education, and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China |
|
Cite this article: |
Wenxuan Chen, Zhengtao Liu, Zihao Huo et al 2024 Chin. Phys. Lett. 41 117403 |
|
|
Abstract Two-dimensional (2D) materials have demonstrated promising prospects owing to their distinctive electronic properties and exceptional mechanical properties. Among them, 2D superconductors with $T_{\rm c}$ above the boiling point of liquid nitrogen (77 K) will exhibit tremendous applicable value in the future. Here, we design two 2D superconductors Na(BC)$_{2}$ and K(BC)$_{2}$ with MgB$_{2}$-like structures, which are theoretically predicted to host $T_{\rm c}$ as high as 99 and 102 K, respectively. The origin of such high $T_{\rm c}$ is ascribed to the presence of both $\sigma$-bonding bands and van Hove singularity at the Fermi level. Furthermore, $T_{\rm c}$ of Na(BC)$_{2}$ is boosted up to 153 K with a biaxial strain of 5%, which sets a new record among 2D superconductors. The predictions of Na(BC)$_{2}$ and K(BC)$_{2}$ open the door to explore 2D high-temperature superconductors and provide a potential future for developing new applications in 2D materials.
|
|
Received: 19 August 2024
Published: 14 November 2024
|
|
PACS: |
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
74.10.+v
|
(Occurrence, potential candidates)
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666 | [2] | Cahangirov S, Topsakal M, Aktürk E, Şahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804 | [3] | Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, and Wu K 2012 Phys. Rev. Lett. 109 056804 | [4] | Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, and Zhang H 2013 Nat. Chem. 5 263 | [5] | Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805 | [6] | Feng J, Peng L, Wu C, Sun X, Hu S, Lin C, Dai J, Yang J, and Xie Y 2012 Adv. Mater. 24 1969 | [7] | Yan L M, Ding C, Li M T, Tang R L, Chen W, Liu B Y, Bu K J, Huang T H, Dai D Z, Jin X B, Yang X F, Cheng E J, Li N N, Zhang Q, Liu F L, Liu X Q, Zhang D Z, Ma S L, Tao Q, Zhu P W, Li S Y, Lü X J, Sun J, Wang X, and Yang W G 2023 Nano Lett. 23 2121 | [8] | Dong L, Wang G Y, Zhu Z, Zhao C X, Yang X Y, Li A M, Chen J L, Guan D D, Li Y Y, Zheng H, Xie M H, and Jia J F 2018 Chin. Phys. Lett. 35 066801 | [9] | Xie X, Lin D, Zhu L, Li Q, Zong J, Chen W, Meng Q, Tian Q, Li S C, Xi X, Wang C, and Zhang Y 2021 Chin. Phys. Lett. 38 107101 | [10] | Ichinokura S, Nakata Y, Sugawara K, Endo Y, Takayama A, Takahashi T, and Hasegawa S 2019 Phys. Rev. B 99 220501 | [11] | Frindt R F 1972 Phys. Rev. Lett. 28 299 | [12] | Xi X X, Zhao L, Wang Z F, Berger H, Forró L, Shan J, and Mak K F 2015 Nat. Nanotechnol. 10 765 | [13] | Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, and Crommie M F 2016 Nat. Phys. 12 92 | [14] | Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, and Mak K F 2015 Nat. Phys. 12 139 | [15] | Bao L, Bi Y, Liu X, Yang X, Hao T, Tian S, Wang Z, Li J, and Gu C 2018 Appl. Phys. Lett. 113 022603 | [16] | Yang Q, Jiang X, and Zhao J 2023 Chin. Phys. Lett. 40 107401 | [17] | Ichinokura S, Sugawara K, Takayama A, Takahashi T, and Hasegawa S 2016 ACS Nano 10 2761 | [18] | Xue M, Chen G, Yang H, Zhu Y, Wang D, He J, and Cao T 2012 J. Am. Chem. Soc. 134 6536 | [19] | Profeta G, Calandra M, and Mauri F 2012 Nat. Phys. 8 131 | [20] | Lu H Y, Yang Y, Hao L, Wang W S, Geng L, Zheng M, Li Y, Jiao N, Zhang P, and Ting C S 2020 Phys. Rev. B 101 214514 | [21] | Bekaert J, Sevik C, and Milošević M V 2022 Nanoscale 14 9918 | [22] | Tsuppayakorn-Aek P, Bovornratanaraks T, Ahuja R, Luo W, and Kotmool K 2023 Phys. Chem. Chem. Phys. 25 2227 | [23] | Campi D, Kumari S, and Marzari N 2021 Nano Lett. 21 3435 | [24] | Yin X Z, Wang H, Wang Q H, Jiao N, Ni M Y, Zheng M M, Lu H Y, and Zhang P 2023 Chin. Phys. Lett. 40 097404 | [25] | Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C, and Xie Y 2019 Adv. Mater. 31 1900568 | [26] | Zeng S, Zhao Y, Li G, and Ni J 2016 Phys. Rev. B 94 024501 | [27] | Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, and Akimitsu J 2001 Nature 410 63 | [28] | Choi H J, David R, Sun H, Marvin L C, and Louie S G 2002 Nature 418 758 | [29] | Kang W N, Kim H J, Choi E M, Jung C U, and Lee S I 2001 Science 292 1521 | [30] | Xu B Z and Beckman S P 2016 2D Mater. 3 031003 | [31] | Zhao Y, Lian C, Zeng S, Dai Z, Meng S, and Ni J 2020 Phys. Rev. B 101 104507 | [32] | Sevik C, Bekaert J, Petrov M, and Milošević M V 2022 Phys. Rev. Mater. 6 024803 | [33] | Modak P, Verma A K, and Mishra A K 2021 Phys. Rev. B 104 054504 | [34] | Gao M, Yan X W, Lu Z Y, and Xiang T 2020 Phys. Rev. B 101 094501 | [35] | Bekaert J, Petrov M, Aperis A, Oppeneer P M, and Milošević M V 2019 Phys. Rev. Lett. 123 077001 | [36] | Wang Y, Lv J, Zhu L, and Ma Y 2012 Comput. Phys. Commun. 183 2063 | [37] | Wang Y, Lv J, Zhu L, and Ma Y 2010 Phys. Rev. B 82 094116 | [38] | Yang L M, Bačić V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, and Ganz E 2015 J. Am. Chem. Soc. 137 2757 | [39] | Liu C, Song X, Li Q, Ma Y, and Chen C 2019 Phys. Rev. Lett. 123 195504 | [40] | Song X, Liu C, Li Q, Hemley R J, Ma Y, and Chen C 2022 Proc. Natl. Acad. Sci. USA 119 e2122691119 | [41] | Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, and Shylin S I 2015 Nature 525 73 | [42] | Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, and Ohishi Y 2016 Nat. Phys. 12 835 | [43] | Gao M, Lu Z Y, and Xiang T 2015 Phys. Rev. B 91 045132 | [44] | Singh S, Romero A H, Mella J D, Eremeev V, Muñoz E, Alexandrova A N, Rabe K M, Vanderbilt D, and Muñoz F 2022 npj Quantum Mater. 7 37 | [45] | Yang L, Li Y P, Liu H D, Jiao N, Ni M Y, Lu H Y, Zhang P, and Ting C S 2023 Chin. Phys. Lett. 40 017402 | [46] | Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, and Guisinger N P 2015 Science 350 1513 | [47] | Margine E R and Giustino F 2013 Phys. Rev. B 87 024505 | [48] | Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, and Cui T 2014 Sci. Rep. 4 6968 | [49] | Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, and Ma Y 2017 Phys. Rev. Lett. 119 107001 | [50] | Zhai H, Munoz F, and Alexandrova A N 2019 J. Mater. Chem. C 7 10700 | [51] | Savini G, Ferrari A C, and Giustino F 2010 Phys. Rev. Lett. 105 037002 | [52] | Yang L, Liu P F, Liu H D, Li Y P, Jiao N, Lu H Y, Wang B T, and Zhang P 2024 Sci. Chin. Phys. Mech. & Astron. 67 217412 | [53] | Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol. 12 744 | [54] | Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K, Chen Z, Zeng X, Gu X, and Xu J 2021 ACS Nano 15 20319 | [55] | Liu P F, Zheng F, Li J, Si J G, Wei L, Zhang J, and Wang B T 2022 Phys. Rev. B 105 245420 | [56] | Si C, Liu Z, Duan W, and Liu F 2013 Phys. Rev. Lett. 111 196802 | [57] | Dai J, Li Z, Yang J, and Hou J 2012 Nanoscale 4 3032 | [58] | Zhang J J and Dong S 2017 J. Chem. Phys. 146 034705 | [59] | Bekaert J, Aperis A, Partoens B, Oppeneer P M, and Milošević M V 2017 Phys. Rev. B 96 094510 | [60] | Meng X H, Shen Y Q, Lv L L, Zhou M, Yang X, Zhang Y, Pang L, E P, and Zhou Z X 2024 Mater. Today Phys. 47 101532 | [61] | Zhang Y, Chen J, Hao J, Xu M, and Li Y 2024 Phys. Rev. B 110 064513 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|