CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Review of the Research Status of Practical Superconducting Materials and Their Current Carrying Performance |
Yifan Zhang1,2, Shengnan Zhang1*, Jixing Liu1, Fang Yang2, Chengshan Li1, Jianfeng Li1, and Pingxiang Zhang1,2 |
1Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China 2School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
|
|
Cite this article: |
Yifan Zhang, Shengnan Zhang, Jixing Liu et al 2024 Chin. Phys. Lett. 41 117402 |
|
|
Abstract Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials. At present, practical superconducting materials include low-temperature superconductors such as NbTi and Nb$_{3}$Sn, high-temperature superconductors such as Bi-2212, Bi-2223, YBCO, iron-based superconductors and MgB$_{2}$. The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production, showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field. However, due to the insufficient intrinsic superconducting performance, low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields. Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability. High-temperature superconductors have greater advantages in high temperature and high field, but many of them are still in the stage of further performance improvement. Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure, and further optimization of intergranular connectivity is required. In addition, it is also necessary to further enhance their pinning ability. The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications.
|
|
Received: 25 June 2024
Review
Published: 25 November 2024
|
|
|
|
|
|
[1] | Yao C and Ma Y W 2021 iScience 24 102541 | [2] | Braginski A I 2019 J. Supercond. Novel Magn. 32 23 | [3] | Onnes H K 1911 Comm. Phys. Lab. Univ. Leiden 122 124 | [4] | Meissner W and Ochsenfeld R 1933 Naturwissenschaften 21 787 | [5] | Josephson B D 1964 Rev. Mod. Phys. 36 216 | [6] | Chou C E, White D, and Johnston H L 1958 Phys. Rev. 109 788 | [7] | Banno N 2023 Superconductivity 6 100047 | [8] | Larbalestier D 1981 IEEE Trans. Magn. 17 1668 | [9] | Flükiger R 1984 J. Phys. Colloq. 45 C1 | [10] | Cooley L, Lee P, and Larbalestier D 2003 Handbook of Superconducting Materials 1 603 | [11] | Lee P J and Larbalestier D C 2003 Wire J. Int. 36 61 | [12] | Zhang P X, Li J F, Guo Q et al. 2019 Titanium for Consumer Applications (Amsterdam: Elsevier) pp 279–296 | [13] | Critchlow P R, Gregory E, and Zeitlin B 1971 Cryogenics 11 3 | [14] | Lee P J and Larbalestier D C 1987 Acta Metall. 35 2523 | [15] | Lee P J and Larbalestier D C 1988 J. Mater. Sci. 23 3951 | [16] | Lee P J 1999 Wiley Encyclopedia of Electrical and Electronics Engineering 21 75 | [17] | Heussner R W, Nunes C B, Lee P J, Larbalestier D C, and Jablonski P D 1996 J. Appl. Phys. 80 1640 | [18] | Miura O, Matsumoto K, Tanaka Y, Yamafuji K, Harada N, Iwakuma M, Funaki K, and Matsushita T 1992 Cryogenics 32 315 | [19] | Heussner R W, Nunes C B, Cooley L D, and Larbalestier D C 1997 IEEE Trans. Appl. Supercond. 7 1142 | [20] | Cooley L D, Jablonski P D, Heussner R W, and Larbalestier D C 1996 Adv. Cryog. Eng. Mater. 42 1095 | [21] | Wang J Q, Rizzo N D, McCambridge J D, Prober D E, Motowidlo L R, and Zeitlin B A 1996 Adv. Cryog. Eng. Mater. 42 1109 | [22] | Motowidlo L R, Zeitlin B A, Walker M S, and Haldar P 1992 Appl. Phys. Lett. 61 991 | [23] | Mousavi T, Grant P S, Speller S C, and Grovenor C 2021 Mater. & Des. 198 109285 | [24] | Zhu Y, Guo Q, Zhang P, Zhang K, Wang R, Zhou Z, Liu X, and Feng Y 2024 IEEE Trans. Appl. Supercond. 34 6000404 | [25] | Lee P 2024 Engineering Critical Current Density vs Applied Field for Superconductors Available in Long Lengths (National High Magnetic Field Laboratory) https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots/ | [26] | Dong C, Xu Q, and Ma Y 2024 Natl. Sci. Rev. 11 nwae122 | [27] | Larbalestier D C, Jiang J, Trociewitz U P et al. 2014 Nat. Mater. 13 375 | [28] | Parizh M, Lvovsky Y, and Sumption M 2017 Supercond. Sci. Technol. 30 014007 | [29] | Volpini G, Alessandria F, Bellomo G et al. 2015 IEEE Trans. Appl. Supercond. 25 4002605 | [30] | Foussat A, Libeyre P, Mitchell N et al. 2010 IEEE Trans. Appl. Supercond. 20 402 | [31] | Peng X, Sumption M D, and Collings E W 2005 IEEE Trans. Appl. Supercond. 15 3426 | [32] | Flükiger R, Uglietti D, Senatore C, and Buta F 2008 Cryogenics 48 293 | [33] | Iwaki G, Sato J, Inaba S, and Kikuchi K 2002 IEEE Trans. Appl. Supercond. 12 1045 | [34] | Gregory E, Gulko E, Pyon T, and Goodrich L F 1996 Adv. Cryog. Eng. Mater. 43 1319 | [35] | Ballarino A and Bottura L 2015 IEEE Trans. Appl. Supercond. 25 6000906 | [36] | Ghosh A K, Sperry E A, D'Ambra J, and Cooley L D 2009 IEEE Trans. Appl. Supercond. 19 2580 | [37] | Xu X 2017 Supercond. Sci. Technol. 30 093001 | [38] | Sandim M J R, Tytko D, Kostka A, Choi P, Awaji S, Watanabe K, and Raabe D 2013 Supercond. Sci. Technol. 26 055008 | [39] | Banno N, Morita T, Yu Z, Yagai T, and Tachikawa K 2019 Supercond. Sci. Technol. 32 115017 | [40] | Zhang Z, Gao Z, Wang Y, Meng J, Cheng J, and Wang Q 2023 Intermetallics 155 107848 | [41] | Schauer W and Schelb W 1981 IEEE Trans. Magn. 17 374 | [42] | Scanlan R M, Fietz W A, and Koch E F 1975 J. Appl. Phys. 46 2244 | [43] | Godeke A 2006 Supercond. Sci. Technol. 19 R68 | [44] | Sharma D, Kalyan D, Makineni S K, and Santra S 2023 J. Alloys Compd. 935 168140 | [45] | Oh S H, Jeong Y J, Na S H, Kim J, Zargaran A, and Lee B J 2023 J. Alloys Compd. 957 170438 | [46] | Xu X, Peng X, Rochester J, Sumption M D, Lee J, Calderon Ortiz G A, and Hwang J 2021 J. Alloys Compd. 857 158270 | [47] | Tarantini C, Kametani F, Balachandran S et al. 2021 Sci. Rep. 11 17845 | [48] | Ortino M, Pfeiffer S, Baumgartner T, Sumption M, Bernardi J, Xu X, and Eisterer M 2021 Supercond. Sci. Technol. 34 035028 | [49] | Buta F, Bonura M, Matera D et al. 2021 J. Phys.: Mater. 4 025003 | [50] | Xu X, Peng X, Rochester J, Lee J Y, and Sumption M 2020 Scr. Mater. 186 317 | [51] | Qu P S, Li S L, Liu G B et al. 2023 Mater. Lett. 341 134157 | [52] | Wheatley L E, Baumgartner T, Eisterer M, Speller S C, Moody M P, and Grovenor C R M 2023 Supercond. Sci. Technol. 36 085006 | [53] | Lee P J, Fischer C M, Naus M T, Squitieri A A, and Larbalestier D C 2003 IEEE Trans. Appl. Supercond. 13 3422 | [54] | Kiyoshi T, Sato A, Takeuchi T et al. 2001 IEEE Trans. Appl. Supercond. 11 2347 | [55] | Hong S, Field M B, Parrell J A, and Zhang Y 2006 IEEE Trans. Appl. Supercond. 16 1146 | [56] | Pong I, Jewell M C, Bordini B et al. 2012 IEEE Trans. Appl. Supercond. 22 4802606 | [57] | Ciazynski D 2007 Fusion Eng. Des. 82 488 | [58] | Ambrosio G 2015 IEEE Trans. Appl. Supercond. 25 4002107 | [59] | Yoshio M, Hiroshi M, Yoshiaki T, and Shigeo H 1988 Jpn. J. Appl. Phys. 27 L361 | [60] | Miao H P, Marken K R, Meinesz M, Czabaj B, and Hong S 2005 IEEE Trans. Appl. Supercond. 15 2554 | [61] | Zheng B and Shao L 2019 Mater. Rep. 33 318 (in Chinese) | [62] | Li Z B, Liu G Q, Yao K, Jiao G F, Xu X Y, Hao Q B, Jin L H, and Li C S 2023 J. Supercond. Novel Magn. 36 843 | [63] | Yang B, Hao Q B, Xiao P et al. 2023 J. Mater. Sci.: Mater. Electron. 34 1681 | [64] | Aytekin M E, Akyol M, and Özkurt B 2024 Appl. Phys. A 130 78 | [65] | Li P, Naderi G, Schwartz J, and Shen T 2017 Supercond. Sci. Technol. 30 035004 | [66] | Angrisani Armenio A, Leveratto A, de Marzi G, Traverso A, Bernini C, Celentano G, and Malagoli A 2022 Supercond. Sci. Technol. 35 035002 | [67] | Leoncino L, Celentano G, Chiarelli S et al. 2019 IEEE Trans. Appl. Supercond. 29 6400305 | [68] | Shen T, Li P, and Ye L 2018 Cryogenics 89 95 | [69] | Oloye T A, Matras M, Jiang J et al. 2021 Supercond. Sci. Technol. 34 035018 | [70] | Shen T, Jiang J, Kametani F, Trociewitz U P, Larbalestier D C, Schwartz J, and Hellstrom E E 2010 Supercond. Sci. Technol. 23 025009 | [71] | Kumar J, Ahluwalia P K, Kishan H, and Awana V P S 2010 J. Supercond. Novel Magn. 23 493 | [72] | Oz Y, Jiang J Y, Matras M, Oloye T A, Kametani F, Hellstrom E E, and Larbalestier D C 2021 Phys. Rev. Mater. 5 074803 | [73] | Kang R, Uglietti D, and Song Y 2020 IEEE Trans. Appl. Supercond. 30 4203809 | [74] | Liu X Q, Liu J X, Shao B T et al. 2022 J. Alloys Compd. 922 166304 | [75] | Hao Q, Xu X, Jiao G, Yao K, Liu G, and Li C 2024 J. Mater. Sci.: Mater. Electron. 35 746 | [76] | Xu A, Jiang J, Tarantini C, Kametani F, Hellstrom E, and Larbalestier D C 2024 IEEE Trans. Appl. Supercond. 34 6400505 | [77] | Verma P K, Reddy B V, Rajasekharan T, Revathy R, Varma M R, and Bai V S 2024 J. Supercond. Novel Magn. 37 1 | [78] | Jiang J Y, Bradford G, Hossain S I et al. 2019 IEEE Trans. Appl. Supercond. 29 6400405 | [79] | Shen T M, Bosque E, Davis D et al. 2019 Sci. Rep. 9 10170 | [80] | Yang D S, Yu M, Ma H J et al. 2022 Supercond. Sci. Technol. 35 015007 | [81] | Shen T M, Garcia Fajardo L, Myers C et al. 2022 Phys. Rev. Accel. Beams 25 122401 | [82] | Voccio J 2023 J. Phys.: Conf. Ser. 2545 012013 | [83] | Sato K I, Kobayashi S I, and Nakashima T 2012 Jpn. J. Appl. Phys. 51 010006 | [84] | Yamade S, Ayai N, Fujikami J et al. 2007 Physica C 463–465 821 | [85] | Giannini E, Gladyshevskii R, Clayton N, Musolino N, Garnier V, Piriou A, and Flükiger R 2008 Curr. Appl. Phys. 8 115 | [86] | Majewski P 2000 J. Mater. Res. 15 854 | [87] | Dogruer M, Aksoy C, Yildirim G, Ozturk O, and Terzioglu C 2021 J. Mater. Sci.: Mater. Electron. 32 7073 | [88] | Nurbaisyatul E S, Azhan H, Ibrahim N, and Saipuddin S F 2021 Cryogenics 119 103353 | [89] | Kumar R 2021 Surf. Rev. Lett. 28 2150020 | [90] | Kametani F, Jiang J, Matras M, Abraimov D, Hellstrom E E, and Larbalestier D C 2015 Sci. Rep. 5 8285 | [91] | Vu L H, Pham A T, Thien N D et al. 2023 Ceram. Int. 49 27614 | [92] | Fallah-Arani H, Sedghi A, Baghshahi S et al. 2022 J. Alloys Compd. 900 163201 | [93] | Ali M A, Karan S M, Roy N, and Banerjee S S 2024 AIP Adv. 14 035110 | [94] | Verma P K, Kaipamangalath A, Varma M R, and Bai V S 2024 IEEE Trans. Appl. Supercond. 34 8000112 | [95] | Shalaby M S, Hamed M H, Yousif N M, and Hashem H M 2021 Ceram. Int. 47 25236 | [96] | Fallah-Arani H, Koohani H, Tehrani F S, Noori N R, and Nodoushan N J 2022 Ceram. Int. 48 31121 | [97] | Fallah-Arani H, Baghshahi S, and Sedghi A 2021 Ceram. Int. 47 3706 | [98] | Ağıl H and Ozoglu S 2021 Int. J. Appl. Ceram. Technol. 18 677 | [99] | Mujaini M, Ilhamsyah A B P, Muhammad-Najib K et al. 2023 J. Supercond. Novel Magn. 36 101 | [100] | Piao R, Miyoshi Y, Yoshikawa M et al. 2019 IEEE Trans. Appl. Supercond. 29 4300407 | [101] | Ohya M, Inagaki Y, Tatamidani K et al. 2013 SEI Tech. Rev. 76 45 | [102] | Vermeer C H, Tolboom A H, Otten S J et al. 2023 Supercond. Sci. Technol. 36 045018 | [103] | Safaei A, Zolfaghari M, Gilvanejad M, and Gharehpetian G B 2020 Int. J. Electr. Power & Energy Syst. 118 105729 | [104] | Hayashi K 2020 SEI Tech. Rev. 91 68 | [105] | Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 | [106] | Kammlott G W, Tiefel T H, and Jin S 1990 Appl. Phys. Lett. 56 2459 | [107] | Ma Y and Xiao L 2004 Chin. Sci. Bull. 49 2435 | [108] | Mukoyama S, Yagi M, Hirata H, Suzuki M, Nagaya S, Kashima N, and Shiohara Y 2009 Furukawa Rev. 35 18 | [109] | Iijima Y, Tanabe N, Kohno O, and Ikeno Y 1992 Appl. Phys. Lett. 60 769 | [110] | Goyal A, Norton D P, Budai J D et al. 1996 Appl. Phys. Lett. 69 1795 | [111] | Paranthaman M P and Izumi T 2004 MRS Bull. 29 533 | [112] |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
| |