Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 117401    DOI: 10.1088/0256-307X/41/11/117401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of Zero-Energy Modes with Possible Time-Reversal Symmetry Breaking on Step Edge of CaKFe$_{4}$As$_{4}$
Lu Cao1,2†, Geng Li1,2,3†, Wenyao Liu1,2,3†, Ya-Bin Liu4, Hui Chen1,2, Yuqing Xing1,2, Lingyuan Kong1,2, Fazhi Yang1,2,3, Quanxin Hu1,2,3, Meng Li1,2, Xingtai Zhou1,2, Zichao Chen1,2, Chenhang Ke5, Lunhui Hu4, Guang-Han Cao4, Congjun Wu5,6,7,8, Hong Ding9,1,3*, and Hong-Jun Gao1,2,3*
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Hefei National Laboratory, Hefei 230088, China
4Department of Physics, Zhejiang University, Hangzhou 310027, China
5New Cornerstone Science Laboratory, Department of Physics, School of Science, Westlake University, Hangzhou 310024, China
6Institute for Theoretical Sciences, Westlake University, Hangzhou 310024, China
7Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
8Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
9Tsung-Dao Lee Institute, and New Cornerstone Science Laboratory, Shanghai Jiao Tong University, Shanghai 201210, China
Cite this article:   
Lu Cao, Geng Li, Wenyao Liu et al  2024 Chin. Phys. Lett. 41 117401
Download: PDF(4403KB)   PDF(mobile)(5106KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes (MZMs) which could be used for topological quantum computation. Topological defects such as vortex lines are required to generate MZMs. Here, we observe the robust edge states along the surface steps of CaKFe$_{4}$As$_{4}$. Remarkably, the tunneling spectra show a sharp zero-bias peak (ZBP) with multiple integer-quantized states at the step edge under zero magnetic field. We propose that the increasing hole doping around step edges may drive the local superconductivity into a state with possible spontaneous time-reversal symmetry breaking. Consequently, the ZBP can be interpreted as an MZM in an effective vortex in the superconducting topological surface state by proximity to the center of a tri-junction with different superconducting order parameters. Our results provide new insights into the interplay between topology and unconventional superconductivity, and pave a new path to generate MZMs without magnetic field.
Received: 28 August 2024      Express Letter Published: 08 October 2024
PACS:  74.25.-q (Properties of superconductors)  
  07.79.Cz (Scanning tunneling microscopes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/117401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/117401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu Cao
Geng Li
Wenyao Liu
Ya-Bin Liu
Hui Chen
Yuqing Xing
Lingyuan Kong
Fazhi Yang
Quanxin Hu
Meng Li
Xingtai Zhou
Zichao Chen
Chenhang Ke
Lunhui Hu
Guang-Han Cao
Congjun Wu
Hong Ding
and Hong-Jun Gao
[1] Paglione J and Greene R L 2010 Nat. Phys. 6 645
[2] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[3] Si Q, Yu R, and Abrahams E 2016 Nat. Rev. Mater. 1 16017
[4] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J, and Kotliar G 2022 Nature 601 35
[5] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, and Shin S 2018 Science 360 182
[6] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056
[7] Liu W, Cao L, Zhu S, Kong L, Wang G, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F, Kondo T, Du S, Cao G H, Shin S, Fu L, Yin Z, Gao H J, and Ding H 2020 Nat. Commun. 11 5688
[8] Zhang P, Wang Z, Wu X, Yaji K, Ishida Y, Kohama Y, Dai G, Sun Y, Bareille C, Kuroda K, Kondo T, Okazaki K, Kindo K, Wang X, Jin C, Hu J, Thomale R, Sumida K, Wu S, Miyamoto K, Okuda T, Ding H, Gu G D, Tamegai T, Kawakami T, Sato M, and Shin S 2019 Nat. Phys. 15 41
[9] Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J, and Ding H 2021 Nat. Commun. 12 4146
[10] Cao L, Liu W, Li G, Dai G, Zheng Q, Wang Y, Jiang K, Zhu S, Huang L, Kong L, Yang F, Wang X, Zhou W, Lin X, Hu J, Jin C, Ding H, and Gao H J 2021 Nat. Commun. 12 6312
[11] Li M, Li G, Cao L, Zhou X, Wang X, Jin C, Chiu C K, Pennycook S J, Wang Z, and Gao H J 2022 Nature 606 890
[12] Liu W, Hu Q, Wang X, Zhong Y, Yang F, Kong L, Cao L, Li G, Peng Y, Okazaki K, Kondo T, Jin C, Xu J, Gao H J, and Ding H 2022 Quantum Front. 1 20
[13] Kallin C and Berlinsky J 2016 Rep. Prog. Phys. 79 054502
[14] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, and Gao H J 2018 Science 362 333
[15] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, and Ding H 2019 Nat. Phys. 15 1181
[16] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, and Tamegai T 2019 Nat. Mater. 18 811
[17] Zhu S Y, Kong L Y, Cao L, Chen H, Papaj M, Du S X, Xing Y Q, Liu W Y, Wang D F, Shen C M, Yang F Z, Schneeloch J, Zhong R D, Gu G D, Fu L, Zhang Y Y, Ding H, and Gao H J 2020 Science 367 189
[18] Wang Z Y, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K, and Madhavan V 2020 Science 367 104
[19] Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410
[20] Chen C, Jiang K, Zhang Y, Liu C F, Liu Y, Wang Z Q, and Wang J 2020 Nat. Phys. 16 536
[21] Fente A, Meier W R, Kong T, Kogan V G, Bud'ko S L, Canfield P C, Guillamón I, and Suderow H 2018 Phys. Rev. B 97 134501
[22] Fang D, Shi X, Du Z, Richard P, Yang H, Wu X X, Zhang P, Qian T, Ding X, Wang Z, Kim T K, Hoesch M, Wang A, Chen X, Hu J, Ding H, and Wen H H 2015 Phys. Rev. B 92 144513
[23] Hanaguri T, Niitaka S, Kuroki K, and Takagi H 2010 Science 328 474
[24] Misra S, Oh S, Hornbaker D J, DiLuccio T, Eckstein J N, and Yazdani A 2002 Phys. Rev. B 66 100510
[25] Shan L, Wang Y L, Shen B, Zeng B, Huang Y, Li A, Wang D, Yang H, Ren C, Wang Q H, Pan S H, and Wen H H 2011 Nat. Phys. 7 325
[26] Liu X, Tao R, Ren M, Chen W, Yao Q, Wolf T, Yan Y, Zhang T, and Feng D 2019 Nat. Commun. 10 1039
[27] Jäck B, Xie Y, and Yazdani A 2021 Nat. Rev. Phys. 3 541
[28] Cao L, Song Y, Liu Y B, Zheng Q, Han G, Liu W, Li M, Chen H, Xing Y, Cao G H, Ding H, Lin X, Du S, Zhang Y Y, Li G, Wang Z, and Gao H J 2021 Nano Res. 14 3921
[29] Farinacci L, Ahmadi G, Reecht G, Ruby M, Bogdanoff N, Peters O, Heinrich B W, von Oppen F, and Franke K J 2018 Phys. Rev. Lett. 121 196803
[30] Lee W C, Zhang S C, and Wu C 2009 Phys. Rev. Lett. 102 217002
[31] Maiti S and Chubukov A V 2013 Phys. Rev. B 87 144511
[32] Grinenko V, Materne P, Sarkar R, Luetkens H, Kihou K, Lee C H, Akhmadaliev S, Efremov D V, Drechsler S L, and Klauss H H 2017 Phys. Rev. B 95 214511
[33] Grinenko V, Sarkar R, Kihou K, Lee C H, Morozov I, Aswartham S, Büchner B, Chekhonin P, Skrotzki W, Nenkov K, Hühne R, Nielsch K, Drechsler S L, Vadimov V L, Silaev M A, Volkov P A, Eremin I, Luetkens H, and Klauss H H 2020 Nat. Phys. 16 789
[34] Iguchi Y, Shi R A, Kihou K, Lee C H, Barkman M, Benfenati A L, Grinenko V, Babaev E, and Moler K A 2023 Science 380 1244
[35] Zhao S Z, Song H Y, Hu L L, Xie T, Liu C, Luo H Q, Jiang C Y, Zhang X, Nie X C, Meng J Q, Duan Y X, Liu S B, Xie H Y, and Liu H Y 2020 Phys. Rev. B 102 144519
[36] Bobkov A M and Bobkova I V 2011 Phys. Rev. B 84 134527
[37] Benfenati A and Babaev E 2022 Phys. Rev. B 105 134518
[38] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
Related articles from Frontiers Journals
[1] Xiaolin Ren, Ronny Sutarto, Qiang Gao, Qisi Wang, Jiarui Li, Yao Wang, Tao Xiang, Jiangping Hu, J. Chang, Riccardo Comin, X. J. Zhou, and Zhihai Zhu. Two Distinct Charge Orders in Infinite-Layer PrNiO$_{2+\delta}$ Revealed by Resonant X-Ray Diffraction[J]. Chin. Phys. Lett., 2024, 41(11): 117401
[2] Wenxuan Chen, Zhengtao Liu, Zihao Huo, Guiyan Dong, Jialiang Cai, and Defang Duan. High-Temperature Phonon-Mediated Superconductivity with $T_{\rm c}$ above 100 K in Monolayer Na(BC)$_{2}$ and K(BC)$_{2}$[J]. Chin. Phys. Lett., 2024, 41(11): 117401
[3] Ziye Mo, Chunyi Li, Wenting Zhang, Chang Liu, Yongxin Sun, Ruixian Liu, and Xingye Lu. Cryogenic Digital Image Correlation as a Probe of Strain in Iron-Based Superconductors[J]. Chin. Phys. Lett., 2024, 41(10): 117401
[4] Qiu-Hao Wang, Mei-Yan Ni, Shu-Jing Li, Fa-Wei Zheng, Hong-Yan Lu, and Ping Zhang. Interlayer Magnetic Interaction in the CrI$_3$/CrSe$_2$ Heterostructure[J]. Chin. Phys. Lett., 2024, 41(5): 117401
[5] Qiuping Yang, Xue Jiang, and Jijun Zhao. Coexistence of Zero-Dimensional Electride State and Superconductivity in AlH$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2023, 40(10): 117401
[6] Xin He, Changling Zhang, Zhiwen Li, Sijia Zhang, Shaomin Feng, Jianfa Zhao, Ke Lu, Baosen Min, Yi Peng, Xiancheng Wang, Jin Song, Luhong Wang, Saori I. Kawaguchi, Cheng Ji, Bing Li, Haozhe Liu, J. S. Tse, and Changqing Jin. Superconductivity above 30 K Achieved in Dense Scandium[J]. Chin. Phys. Lett., 2023, 40(10): 117401
[7] Xin-Zhu Yin, Hao Wang, Qiu-Hao Wang, Na Jiao, Mei-Yan Ni, Meng-Meng Zheng, Hong-Yan Lu, and Ping Zhang. Superconductivity Modulated by Carbonization and Hydrogenation in Two-Dimensional MXenes $M_{2}$N ($M$ = Mo, W)[J]. Chin. Phys. Lett., 2023, 40(9): 117401
[8] Peiyi Li, Jiachang Bi, Shunda Zhang, Rui Cai, Guanhua Su, Fugang Qi, Ruyi Zhang, Zhiyang Wei, and Yanwei Cao. Transformation of Hexagonal Lu to Cubic LuH$_{2+x}$ Single-Crystalline Films[J]. Chin. Phys. Lett., 2023, 40(8): 117401
[9] Sheng Ma, Shanshan Yan, Jiali Liu, Yizhe Wang, Yuhang Zhang, Zhen Zhao, Zouyouwei Lu, Dong Li, Yue Liu, Jihu Lu, Hua Zhang, Haitao Yang, Fang Zhou, Zian, Li, Xiaoli Dong, and Zhongxian Zhao. Hydrothermally Obtaining Superconductor Single Crystal of FeSe$_{0.2}$Te$_{0.8}$ without Interstitial Fe[J]. Chin. Phys. Lett., 2023, 40(6): 117401
[10] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 117401
[11] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 117401
[12] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 117401
[13] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 117401
[14] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 117401
[15] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 117401
Viewed
Full text


Abstract