CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Sr-Doping-Modulated Metal-Insulator Transition in NdNiO$_{3}$ Epitaxial Films |
Huan Ye1, Enda Hua1, Fang Xu1, Jingdi Lu1, Feng Jin1, Wenbin Wu1, Liang, Si2*, and Lingfei Wang1* |
1Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China 2School of Physics, Northwest University, Xi'an 710127, China
|
|
Cite this article: |
Huan Ye, Enda Hua, Fang Xu et al 2024 Chin. Phys. Lett. 41 117301 |
|
|
Abstract Perovskite-structured nickelates, ReNiO$_{3}$ (Re = rare earth), have long garnered significant research interest due to their sharp and highly tunable metal-insulator transitions (MITs). Doping the parent compound ReNiO$_{3}$ with alkaline earth metal can substantially suppress this MIT. Recently, intriguing superconductivity has been discovered in doped infinite-layer nickelates (ReNiO$_{2})$, while the mechanism behind A-site doping-suppressed MIT in the parent compound ReNiO$_{3}$ remains unclear. To address this problem, we grew a series of Nd$_{1-x}$Sr$_{x}$NiO$_{3}$ (NSNO, $x =0$–0.2) thin films and conducted systematic electrical transport measurements. Our resistivity and Hall measurements suggest that Sr-induced excessive holes are not the primary reason for MIT suppression. Instead, first-principles calculations indicate that Sr cations, with larger ionic radius, suppress breathing mode distortions and promote charge transfer between oxygen and Ni cations. This process weakens Ni–O bond disproportionation and Ni$^{2+}$/Ni$^{4+}$ charge disproportionation. Such significant modulations in lattice and electronic structures convert the ground state from a charge-disproportionated antiferromagnetic insulator to a paramagnetic metal, thereby suppressing the MIT. This scenario is further supported by the weakened MIT observed in the tensile-strained NSNO/SrTiO$_3$(001) films. Our work reveals the A-side doping-modulated electrical transport of perovskite nickelate films, providing deeper insights into novel electric phases in these strongly correlated nickelate systems.
|
|
Received: 22 July 2024
Editors' Suggestion
Published: 11 November 2024
|
|
PACS: |
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
61.72.U-
|
(Doping and impurity implantation)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
|
|
|
[1] | Mizokawa T and Fujimori A 2000 Spin, Charge, And Orbital Ordering in $3d$ Transition-Metal Oxides Studied by Model Hartree–Fock (Boston, MA: Springer) p 121 | [2] | Giovannetti G, Kumar S, Khomskii D, Picozzi S, and van den Brink J 2009 Phys. Rev. Lett. 103 156401 | [3] | Ardizzone I, Teyssier J, Crassee I, Kuzmenko A B, Mazzone D G, Gawryluk D J, Medarde M, and van der Marel D 2021 Phys. Rev. Res. 3 033007 | [4] | Binci L, Kotiuga M, Timrov I, and Marzari N 2023 Phys. Rev. Res. 5 033146 | [5] | Patel R K, Meyers D, Liu X R, Mandal P, Kareev M, Shafer P, Kim J W, Ryan P J, Middey S, and Chakhalian J 2020 APL Mater. 8 041113 | [6] | Mattoni G, Zubko P, Maccherozzi F, van der Torren A J H, Boltje D B, Hadjimichael M, Manca N, Catalano S, Gibert M, Liu Y, Aarts J, Triscone J M, Dhesi S S, and Caviglia A D 2016 Nat. Commun. 7 13141 | [7] | Kumar D, Rajeev K P, Kushwaha A K, and Budhani R C 2010 J. Appl. Phys. 108 063503 | [8] | Kim T H, Angst M, Hu B, Jin R, Zhang X G, Wendelken J F, Plummer E W, and Li A P 2010 Proc. Natl. Acad. Sci. USA 107 5272 | [9] | Middey S, Chakhalian J, Mahadevan P, Freeland J W, Millis A J, and Sarma D D 2016 Annu. Rev. Mater. Res. 46 305 | [10] | Park H, Millis A J, and Marianetti C A 2012 Phys. Rev. Lett. 109 156402 | [11] | Liu J, Kargarian M, Kareev M, Gray B, Ryan P J, Cruz A, Tahir N, Chuang Y D, Guo J, Rondinelli J M, Freeland J W, Fiete G A, and Chakhalian J 2013 Nat. Commun. 4 2714 | [12] | Liu J, Okamoto S, van Veenendaal M, Kareev M, Gray B, Ryan P, Freeland J W, and Chakhalian J 2012 Phys. Rev. B 83 079904 | [13] | Alonso J A, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G, Martínez-Lope M J, and Casais M T 1999 Phys. Rev. Lett. 82 3871 | [14] | Vambold N O, Sazhaev G A, and Leonov I V 2023 JETP Lett. 118 886 | [15] | Yamauchi K and Hamada I 2023 Phys. Rev. B 108 045108 | [16] | Caviglia A D, Först M, Scherwitzl R, Khanna V, Bromberger H, Mankowsky R, Singla R, Chuang Y D, Lee W S, Krupin O, Schlotter W F, Turner J J, Dakovski G L, Minitti M P, Robinson J, Scagnoli V, Wilkins S B, Cavill S A, Gibert M, Gariglio S, Zubko P, Triscone J M, Hill J P, Dhesi S S, and Cavalleri A 2013 Phys. Rev. B 88 220401 | [17] | Domínguez C, Georgescu A B, Mundet B, Zhang Y, Fowlie J, Mercy A, Waelchli A, Catalano S, Alexander D T L, Ghosez P, Georges A, Millis A J, Gibert M, and Triscone J M 2020 Nat. Mater. 19 1182 | [18] | Domínguez C, Fowlie J, Georgescu A B, Mundet B, Jaouen N, Viret M, Suter A, Millis A J, Salman Z, Prokscha T, Gibert M, and Triscone J M 2023 Phys. Rev. Mater. 7 065002 | [19] | Chen D, Worm P, Si L, Zhang C, Deng F, Jiang P, and Zhong Z 2023 Chin. Phys. B 32 087105 | [20] | Zhang M, Zhang Y, Guo H, and Yang F 2021 Chin. Phys. B 30 108204 | [21] | Moon E J, Rondinelli J M, Prasai N, Gray B A, Kareev M, Chakhalian J, and Cohn J L 2012 Phys. Rev. B 85 121106 | [22] | Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J, Sutarto R, He F, Wu C, Zhu J, Sun Y, Ramadoss K, Nonnenmann S S, Yu N, Comin R, Rabe K M, Sankaranarayanan S K R S, and Ramanathan S 2018 Nature 553 68 | [23] | Sivakumar M, Pandi K, Chen S M, Cheng Y H, and Sakthivel M 2017 New J. Chem. 41 11201 | [24] | Park T J, Selcuk K, Zhang H T, Manna S, Batra R, Wang Q, Yu H, Aadit N A, Sankaranarayanan S K R S, Zhou H, Camsari K Y, and Ramanathan S 2022 Nano Lett. 22 8654 | [25] | Shi J, Ha S D, Zhou Y, Schoofs F, and Ramanathan S 2013 Nat. Commun. 4 2676 | [26] | Oh C, Heo S, Jang H M, and Son J 2016 Appl. Phys. Lett. 108 122106 | [27] | Zhou Y, Guan X, Zhou H, Ramadoss K, Adam S, Liu H, Lee S, Shi J, Tsuchiya M, Fong D D, and Ramanathan S 2016 Nature 534 231 | [28] | Torrance J, Lacorre P, Nazzal A, Ansaldo E, and Niedermayer C 1992 Phys. Rev. B 45 8209 | [29] | Medarde M L 1997 J. Phys.: Condens. Matter 9 1679 | [30] | Catalano S, Gibert M, Bisogni V, Peil O E, He F, Sutarto R, Viret M, Zubko P, Scherwitzl R, Georges A, Sawatzky G A, Schmitt T, and Triscone J M 2014 APL Mater. 2 116110 | [31] | Liu J, Kareev M, Gray B, Kim J W, Ryan P, Dabrowski B, Freeland J W, and Chakhalian J 2010 Appl. Phys. Lett. 96 233110 | [32] | Frano A, Schierle E, Haverkort M W, Lu Y, Wu M, Blanco-Canosa S, Nwankwo U, Boris A V, Wochner P, Cristiani G, Habermeier H U, Logvenov G, Hinkov V, Benckiser E, Weschke E, and Keimer B 2013 Phys. Rev. Lett. 111 106804 | [33] | Hepting M, Minola M, Frano A, Cristiani G, Logvenov G, Schierle E, Wu M, Bluschke M, Weschke E, Habermeier H U, Benckiser E, Le Tacon M, and Keimer B 2014 Phys. Rev. Lett. 113 227206 | [34] | Boris A V, Matiks Y, Benckiser E, Frano A, Popovich P, Hinkov V, Wochner P, Castro-Colin M, Detemple E, Malik V K, Bernhard C, Prokscha T, Suter A, Salman Z, Morenzoni E, Cristiani G, Habermeier H U, and Keimer B 2011 Science 332 937 | [35] | Benckiser E, Haverkort M W, Brück S, Goering E, Macke S, Frañó A, Yang X, Andersen O K, Cristiani G, Habermeier H U, Boris A V, Zegkinoglou I, Wochner P, Kim H J, Hinkov V, and Keimer B 2011 Nat. Mater. 10 189 | [36] | Disa A S, Kumah D P, Malashevich A, Chen H, Arena D A, Specht E D, Ismail-Beigi S, Walker F J, and Ahn C H 2015 Phys. Rev. Lett. 114 026801 | [37] | Chen H, Kumah D P, Disa A S, Walker F J, Ahn C H, and Ismail-Beigi S 2013 Phys. Rev. Lett. 110 186402 | [38] | Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 | [39] | Huang B 2023 Chin. Phys. Lett. 40 057403 | [40] | Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 | [41] | Alonso J A, MartíNez-Lope M J, and Hidalgo M A 1995 J. Solid State Chem. 116 146 | [42] | Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409 | [43] | Wang L, Chang L, Yin X, Rusydi A, You L, Zhou Y, Fang L, and Wang J 2017 J. Phys.: Condens. Matter 29 025002 | [44] | Lee K, Goodge B H, Li D, Osada M, Wang B Y, Cui Y, Kourkoutis L F, and Hwang H Y 2020 APL Mater. 8 041107 | [45] | Ojha S K, Ray S, Das T, Middey S, Sarkar S, Mahadevan P, Wang Z, Zhu Y, Liu X, Kareev M, and Chakhalian J 2019 Phys. Rev. B 99 235153 | [46] | Hauser A J, Mikheev E, Moreno N E, Cain T A, Hwang J, Zhang J Y, and Stemmer S 2013 Appl. Phys. Lett. 103 182105 | [47] | Song Q, Doyle S, Pan G A, El Baggari I, Ferenc Segedin D, Córdova Carrizales D, Nordlander J, Tzschaschel C, Ehrets J R, Hasan Z, El-Sherif H, Krishna J, Hanson C, Labollita H, Bostwick A, Jozwiak C, Rotenberg E, Xu S Y, Lanzara A, N'Diaye A T, Heikes C A, Liu Y H, Paik H, Brooks C M, Pamuk B, Heron J T, Shafer P, Ratcliff W D, Botana A S, Moreschini L, and Mundy J A 2023 Nat. Phys. 19 522 | [48] | Hauser A J, Mikheev E, Moreno N E, Hwang J, Zhang J Y, and Stemmer S 2015 Appl. Phys. Lett. 106 092104 | [49] | Dhaka R S, Das T, Plumb N C, Ristic Z, Kong W, Matt C E, Xu N, Dolui K, Razzoli E, Medarde M, Patthey L, Shi M, Radović M, and Mesot J 2015 Phys. Rev. B 92 035127 | [50] | Eguchi R, Chainani A, Taguchi M, Matsunami M, Ishida Y, Horiba K, Senba Y, Ohashi H, and Shin S 2009 Phys. Rev. B 79 115122 | [51] | Jiang J, Lee A T, Lee S, Lau C, Li M, Pedersen T M, Liu C, Gorovikov S, Zhdanovich S, Damascelli A, Zou K, Walker F J, Ismail-Beigi S, and Ahn C H 2021 Phys. Rev. B 103 195153 | [52] | Liu Q, Dalpian G M, and Zunger A 2019 Phys. Rev. Lett. 122 106403 | [53] | Iwasaki K, Ito T, Nagasaki T, Arita Y, Yoshino M, and Matsui T 2008 J. Solid State Chem. 181 3145 | [54] | Rondinelli J M and Fennie C J 2012 Adv. Mater. 24 1961 | [55] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 | [56] | Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943 | [57] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | [58] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | [59] | Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J, and Schwarz K 2001 Wien2k, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (Austria: Vienna University of Technology) | [60] | Schwarz K, Blaha P, and Madsen G K H 2002 Comput. Phys. Commun. 147 71 | [61] | Miyake T and Aryasetiawan F 2008 Phys. Rev. B 77 085122 | [62] | Si L, Xiao W, Kaufmann J, Tomczak J M, Lu Y, Zhong Z, and Held K 2020 Phys. Rev. Lett. 124 166402 | [63] | Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|