Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 107501    DOI: 10.1088/0256-307X/41/10/107501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Large Tunneling Magnetoresistance and Perfect Spin Filtering Effect in van der Waals Cu/FeX$_{2}$/h-BN/FeX$_{2}$/Cu (X = Cl, Br, I) Magnetic Tunnel Junctions
Xinlong Dong1,2,3†, Xiaowen Shi1,2†, Dan Qiao1,2, Zeyu Li3, Yuhao Bai1,2*, Zhenhua Qiao3,4*, and Xiaohong Xu2*
1College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
2Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, Research Institute of Materials Science, Shanxi Normal University, Taiyuan 030031, China
3International Center for Quantum Design of Functional Materials, University of Science and Technology of China, Hefei 230026, China
4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Cite this article:   
Xinlong Dong, Xiaowen Shi, Dan Qiao et al  2024 Chin. Phys. Lett. 41 107501
Download: PDF(3505KB)   PDF(mobile)(3529KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The two-dimensional magnetic van der Waals heterojunctions have opened unprecedented opportunities to explore new physics due to their potential for spintronic applications. Here, combing density functional theory with non-equilibrium Green's function technique, we systematically investigate the spin-polarized transport properties of Cu/FeX$_{2}$/h-BN/FeX$_{2}$/Cu (X = Cl, Br, I) magnetic tunnel junctions (MTJs). It is found that the maximum tunneling magnetoresistance of Cu/FeCl$_{2}$/h-BN/FeCl$_{2}$/Cu, Cu/FeBr$_{2}$/h-BN/FeBr$_{2}$/Cu, and Cu/FeI$_{2}$/h-BN/FeI$_{2}$/Cu MTJs can reach 3443%, 3069%, and 1676%, respectively. In the parallel state, the resistance area products at zero bias for Cu/FeCl$_{2}$/h-BN/FeCl$_{2}$/Cu, Cu/FeBr$_{2}$/h-BN/FeBr$_{2}$/Cu, and Cu/FeI$_{2}$/h-BN/FeI$_{2}$/Cu MTJs are 0.92, 0.47, and 0.32 $\Omega$$\cdot$µm$^{2}$, respectively. More interestingly, our results indicate that Cu/FeX$_{2}$/h-BN/FeX$_{2}$/Cu (X = Cl, Br, I) MTJs can realize spin filtering effect, while Cu/FeCl$_{2}$/h-BN/FeCl$_{2}$/Cu and Cu/FeI$_{2}$/h-BN/FeI$_{2}$/Cu MTJs exhibit negative differential resistance. Our results demonstrate that large tunneling magnetoresistance, negative differential resistance effect, low resistance area product as well as excellent spin filtering effect coexist in Cu/FeCl$_{2}$/h-BN/FeCl$_{2}$/Cu and Cu/FeI$_{2}$/h-BN/FeI$_{2}$/Cu MTJs, and that the feasible tunability of such a kind of van der Waals magnetic tunnel junctions is beneficial to designing next-generation logic devices.
Received: 09 July 2024      Published: 11 October 2024
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.76.+j (Spin transport effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/107501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/107501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinlong Dong
Xiaowen Shi
Dan Qiao
Zeyu Li
Yuhao Bai
Zhenhua Qiao
and Xiaohong Xu
[1] Zhu J G and Park C 2006 Mater. Today 9 36
[2] Heiliger C, Zahn P, and Mertig I 2006 Mater. Today 9 46
[3] Chappert C, Fert A, and Van Dau F N 2007 Nat. Mater. 6 813
[4] Wood R 2009 J. Magn. Magn. Mater. 321 555
[5] Piquemal-Banci M, Galceran R, Caneva S, Martin M B, Weatherup R S, Kidambi P R, Bouzehouane K, Xavier S, Anane A, Petroff F, Fert A, Robertson J, Hofmann S, Dlubak B, and Seneor P 2016 Appl. Phys. Lett. 108 102404
[6] Li X, Cai W, Colombo L, and Ruoff R S 2009 Nano Lett. 9 4268
[7] Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T, and Kong J 2012 Nano Lett. 12 161
[8] Kidambi P R, Blume R, Kling J, Wagner J B, Baehtz C, Weatherup R S, Schloegl R, Bayer B C, and Hofmann S 2014 Chem. Mater. 26 6380
[9] Yamaguchi T, Inoue Y, Masubuchi S, Morikawa S, Onuki M, Watanabe K, Taniguchi T, Moriya R, and Machida T 2013 Appl. Phys. Express 6 073001
[10] Yankowitz M, Xue J, and LeRoy B J 2014 J. Phys.: Condens. Matter 26 303201
[11] Geim A K and Grigorieva I V 2013 Nature 499 419
[12] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Katsnelson M I, Eaves L, Morozov S V, Mayorov A S, Peres N M R, Castro Neto A H, Leist J, Geim A K, Ponomarenko L A, and Novoselov K S 2012 Nano Lett. 12 1707
[13] Kamalakar M V, Dankert A, Bergsten J, Ive T, and Dash S P 2014 Sci. Rep. 4 6146
[14] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[15] Zha H, Li W, Zhang G, Liu W, Deng L, Jiang Q, Ye M, Wu H, Chang H, and Qiao S 2023 Chin. Phys. Lett. 40 087501
[16] Zhang Y L, Zhang Y Y, Ni J Y, Yang J H, Xiang H J, and Gong X G 2021 Chin. Phys. Lett. 38 027501
[17] Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X D 2018 Science 360 1214
[18] Zhang Y, Xu H, Feng J, Wu H, Yu G, and Han X 2021 Chin. Phys. B 30 118504
[19] Li X L, Lü J T, Zhang J, You L, Su Y R, and Tsymbal E Y 2019 Nano Lett. 19 5133
[20] Yan Z, Zhang R, Dong X, Qi S, and Xu X 2020 Phys. Chem. Chem. Phys. 22 14773
[21] Pan L, Huang L, Zhong M, Jiang X W, Deng H X, Li J, Xia J B, and Wei Z 2018 Nanoscale 10 22196
[22] Lin Z Z and Chen X 2020 Adv. Electron. Mater. 6 1900968
[23] Zhang L, Li T, Li J, Jiang Y, Yuan J, and Li H 2020 J. Phys. Chem. C 124 27429
[24] Zhou J, Qiao J, Duan C G, Bournel A, Wang K L, and Zhao W 2019 ACS Appl. Mater. & Interfaces 11 17647
[25] Pan L, Wen H, Huang L, Chen L, Deng H X, Xia J B, and Wei Z 2019 Chin. Phys. B 28 107504
[26] Wu X M, Feng Y L, Li S, Zhang B Q, and Gao G Y 2020 J. Phys. Chem. C 124 16127
[27] Feng Y L, Liu N, and Gao G Y 2021 Appl. Phys. Lett. 118 112407
[28] Feng Y L, Wu X M, Hu L, and Gao G Y 2020 J. Mater. Chem. C 8 14353
[29] Feng Y L, Wu X M, and Gao G Y 2020 Appl. Phys. Lett. 116 022402
[30] Dong X, Jia X, Yan Z, Shen X, Li Z, Qiao Z, and Xu X 2023 Chin. Phys. Lett. 40 087301
[31] Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, and Wang K Y 2022 Chin. Phys. Lett. 39 128501
[32] Lan G, Xu H, Zhang Y, Cheng C, He B, Li J, He C, Wan C, Feng J, Wei H, Zhang J, Han X, and Yu G 2023 Chin. Phys. Lett. 40 058501
[33] Wang Z A, Zhang X M, Zhu W K, Yan F G, Liu P F, Yuan Z, and Wang K Y 2023 Chin. Phys. Lett. 40 077201
[34] Zhou X H, Brzostowski B, Durajski A, Liu M Z, Xiang J, Jiang T R, Wang Z Q, Chen S W, Li P G, Zhong Z H, Drzewiński A, Jarosik M, Szczęśniak R, Lai T S, Guo D H, and Zhong D Y 2020 J. Phys. Chem. C 124 9416
[35] Zhou X, Jiang T, Tao Y, Ji Y, Wang J, Lai T, and Zhong D 2024 ACS Nano 18 10912
[36] Torun E, Sahin H, Singh S K, and Peeters F M 2015 Appl. Phys. Lett. 106 192404
[37] Ceyhan E, Yagmurcukardes M, Peeters F M, and Sahin H 2021 Phys. Rev. B 103 014106
[38] Ghosh R K, Jose A, and Kumari G 2021 Phys. Rev. B 103 054409
[39] Kulish V V and Huang W 2017 J. Mater. Chem. C 5 8734
[40] Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A, and Hennig R G 2017 Nano Lett. 17 5251
[41] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[42] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[45] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[46] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[47] Taylor J, Guo H, and Wang J 2001 Phys. Rev. B 63 245407
[48] Taylor J, Guo H, and Wang J 2001 Phys. Rev. B 63 121104
[49] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[50] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[51] Jauho A P, Wingreen N S, and Meir Y 1994 Phys. Rev. B 50 5528
[52] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, and Ando K 2004 Nat. Mater. 3 868
[53] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, and Yang S H 2004 Nat. Mater. 3 862
[54] Su Y, Li X, Zhu M, Zhang J, You L, and Tsymbal E Y 2021 Nano Lett. 21 175
[55] Yadav M K and Gupta S K 2022 Micro Nanostruct. 165 207192
[56] Rolf-Pissarczyk S, Yan S C, Malavolti L, Burgess J A J, McMurtrie G, and Loth S 2017 Phys. Rev. Lett. 119 217201
[57] Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, and van der Zant H S J 2014 Nat. Nanotechnol. 9 830
[58] Rashidi M, Taucer M, Ozfidan I, Lloyd E, Koleini M, Labidi H, Pitters J L, Maciejko J, and Wolkow R A 2016 Phys. Rev. Lett. 117 276805
[59] Dong Q X, Hu R, Fan Z Q, and Zhang Z H 2018 Carbon 130 206
[60] Kuang G, Chen S Z, Yan L, Chen K Q, Shang X, Liu P N, and Lin N 2018 J. Am. Chem. Soc. 140 570
[61]Duret C and Ueno S 2012 NTN Tech. Rev. 80 64 (in Japanese)
[62] Mao S N, Chen Y H, Liu F et al. 2006 IEEE Trans. Magn. 42 97
[63] Dave R W, Steiner G, Slaughter J M et al. 2006 IEEE Trans. Magn. 42 1935
Related articles from Frontiers Journals
[1] Qiu-Hao Wang, Mei-Yan Ni, Shu-Jing Li, Fa-Wei Zheng, Hong-Yan Lu, and Ping Zhang. Interlayer Magnetic Interaction in the CrI$_3$/CrSe$_2$ Heterostructure[J]. Chin. Phys. Lett., 2024, 41(5): 107501
[2] Litong Jiang, C. Y. Jiang, Y. C. Tian, H. Zhao, J. Zhang, Z. Y. Tian, S. H. Fu, E. J. Liang, X. C. Wang, Changqing Jin, and Jimin Zhao. Ultrafast Carrier Dynamics in Ba$_{6}$Cr$_{2}$S$_{10}$ Modified by Toroidal Magnetic Phase Transition[J]. Chin. Phys. Lett., 2024, 41(4): 107501
[3] Jia-Rui Chen, Yu-Ting Gong, Xian-Yang Lu, Chen-Yu Zhang, Yong Hu, Ming-Zhi Wang, Zhong Shi, Shuai Fu, Hong-Ling Cai, Ruo-Bai Liu, Yuan Yuan, Yu Lu, Tian-Yu Liu, Biao You, Yong-Bing Xu, and Jun Du. Magnetic Damping Properties of Single-Crystalline Co$_{55}$Mn$_{18}$Ga$_{27}$ and Co$_{50}$Mn$_{18}$Ga$_{32}$ Films[J]. Chin. Phys. Lett., 2023, 40(4): 107501
[4] Xiao-Ping Ma, Hongguo Yang, Changfeng Li, Cheng Song, and Hong-Guang Piao. Nanocavity-Mediated Fast Magnetic Vortex Core In-Situ Switching by Local Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(12): 107501
[5] Qingwei Fu, Kaiyuan Zhou, Lina Chen, Yongbing Xu, Tiejun Zhou, Dunhui Wang, Kequn Chi, Hao Meng, Bo Liu, Ronghua Liu, and Youwei Du. Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2020, 37(11): 107501
[6] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 107501
[7] Juan Ren, Song-Bin Zhang, Ping-Ping Liu. Magnetic and Electronic Properties of $\beta$-Graphyne Doped with Rare-Earth Atoms[J]. Chin. Phys. Lett., 2019, 36(7): 107501
[8] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 107501
[9] Hui-Fang Yang, Ling-Zhi Tang, Qiang Sun, Lei Sun, Zhen-Hua Li, Shu-Xia Ren. Ferromagnetism in High-Surface-Area ZnO Nanosheets Prepared by a Template-Assisted Hydrothermal Method[J]. Chin. Phys. Lett., 2018, 35(6): 107501
[10] Tian-Le Wang, Zhi-Gang Li, Li Zhang, Wei-Ping Chen, Shang-Shen Feng, Wen-Wu Zhong. Coercivity Ageing Effect on FePt Nanoparticles in Mesoporous Silica via Stepwise Synthesis Strategy[J]. Chin. Phys. Lett., 2018, 35(6): 107501
[11] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 107501
[12] Abdelkader Khouidmi, Hadj Baltache, Ali Zaoui. Magnetic and Electronic Properties of Double Perovskite Ba$_{2}$SmNbO$_{6 }$ without Octahedral Tilting by First Principle Calculations[J]. Chin. Phys. Lett., 2017, 34(7): 107501
[13] Ya-Qing Feng, Kui-Juan Jin, Chen Ge, Xu He, Lin Gu, Zhen-Zhong Yang, Hai-Zhong Guo, Qian Wan, Meng He, Hui-Bin Lu, Guo-Zhen Yang. Effect of Terraces at the Interface on the Structural and Physical Properties of La$_{0.8}$Sr$_{0.2}$MnO$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(07): 107501
[14] Jian-Fen Hu, Lin Feng, Wen-Xing Zhang, Yong Li, Ya-Xin Lu. Detection of DNA Bases Using Fe Atoms and Graphene[J]. Chin. Phys. Lett., 2016, 33(01): 107501
[15] GUO Min-Chen, LIU Wei-Fang, WU Ping, ZHANG Hong, XU Xun-Ling, WANG Shou-Yu, RAO Guang-Hui. Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles[J]. Chin. Phys. Lett., 2015, 32(06): 107501
Viewed
Full text


Abstract