CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Large Tunneling Magnetoresistance and Perfect Spin Filtering Effect in van der Waals Cu/FeX$_{2}$/h-BN/FeX$_{2}$/Cu (X = Cl, Br, I) Magnetic Tunnel Junctions |
Xinlong Dong1,2,3†, Xiaowen Shi1,2†, Dan Qiao1,2, Zeyu Li3, Yuhao Bai1,2*, Zhenhua Qiao3,4*, and Xiaohong Xu2* |
1College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China 2Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, Research Institute of Materials Science, Shanxi Normal University, Taiyuan 030031, China 3International Center for Quantum Design of Functional Materials, University of Science and Technology of China, Hefei 230026, China 4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
|
|
Cite this article: |
Xinlong Dong, Xiaowen Shi, Dan Qiao et al 2024 Chin. Phys. Lett. 41 107501 |
|
|
Abstract The two-dimensional magnetic van der Waals heterojunctions have opened unprecedented opportunities to explore new physics due to their potential for spintronic applications. Here, combing density functional theory with non-equilibrium Green's function technique, we systematically investigate the spin-polarized transport properties of Cu/FeX$_{2}$/h-BN/FeX$_{2}$/Cu (X = Cl, Br, I) magnetic tunnel junctions (MTJs). It is found that the maximum tunneling magnetoresistance of Cu/FeCl$_{2}$/h-BN/FeCl$_{2}$/Cu, Cu/FeBr$_{2}$/h-BN/FeBr$_{2}$/Cu, and Cu/FeI$_{2}$/h-BN/FeI$_{2}$/Cu MTJs can reach 3443%, 3069%, and 1676%, respectively. In the parallel state, the resistance area products at zero bias for Cu/FeCl$_{2}$/h-BN/FeCl$_{2}$/Cu, Cu/FeBr$_{2}$/h-BN/FeBr$_{2}$/Cu, and Cu/FeI$_{2}$/h-BN/FeI$_{2}$/Cu MTJs are 0.92, 0.47, and 0.32 $\Omega$$\cdot$µm$^{2}$, respectively. More interestingly, our results indicate that Cu/FeX$_{2}$/h-BN/FeX$_{2}$/Cu (X = Cl, Br, I) MTJs can realize spin filtering effect, while Cu/FeCl$_{2}$/h-BN/FeCl$_{2}$/Cu and Cu/FeI$_{2}$/h-BN/FeI$_{2}$/Cu MTJs exhibit negative differential resistance. Our results demonstrate that large tunneling magnetoresistance, negative differential resistance effect, low resistance area product as well as excellent spin filtering effect coexist in Cu/FeCl$_{2}$/h-BN/FeCl$_{2}$/Cu and Cu/FeI$_{2}$/h-BN/FeI$_{2}$/Cu MTJs, and that the feasible tunability of such a kind of van der Waals magnetic tunnel junctions is beneficial to designing next-generation logic devices.
|
|
Received: 09 July 2024
Published: 11 October 2024
|
|
PACS: |
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.76.+j
|
(Spin transport effects)
|
|
|
|
|
[1] | Zhu J G and Park C 2006 Mater. Today 9 36 |
[2] | Heiliger C, Zahn P, and Mertig I 2006 Mater. Today 9 46 |
[3] | Chappert C, Fert A, and Van Dau F N 2007 Nat. Mater. 6 813 |
[4] | Wood R 2009 J. Magn. Magn. Mater. 321 555 |
[5] | Piquemal-Banci M, Galceran R, Caneva S, Martin M B, Weatherup R S, Kidambi P R, Bouzehouane K, Xavier S, Anane A, Petroff F, Fert A, Robertson J, Hofmann S, Dlubak B, and Seneor P 2016 Appl. Phys. Lett. 108 102404 |
[6] | Li X, Cai W, Colombo L, and Ruoff R S 2009 Nano Lett. 9 4268 |
[7] | Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T, and Kong J 2012 Nano Lett. 12 161 |
[8] | Kidambi P R, Blume R, Kling J, Wagner J B, Baehtz C, Weatherup R S, Schloegl R, Bayer B C, and Hofmann S 2014 Chem. Mater. 26 6380 |
[9] | Yamaguchi T, Inoue Y, Masubuchi S, Morikawa S, Onuki M, Watanabe K, Taniguchi T, Moriya R, and Machida T 2013 Appl. Phys. Express 6 073001 |
[10] | Yankowitz M, Xue J, and LeRoy B J 2014 J. Phys.: Condens. Matter 26 303201 |
[11] | Geim A K and Grigorieva I V 2013 Nature 499 419 |
[12] | Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Katsnelson M I, Eaves L, Morozov S V, Mayorov A S, Peres N M R, Castro Neto A H, Leist J, Geim A K, Ponomarenko L A, and Novoselov K S 2012 Nano Lett. 12 1707 |
[13] | Kamalakar M V, Dankert A, Bergsten J, Ive T, and Dash S P 2014 Sci. Rep. 4 6146 |
[14] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 |
[15] | Zha H, Li W, Zhang G, Liu W, Deng L, Jiang Q, Ye M, Wu H, Chang H, and Qiao S 2023 Chin. Phys. Lett. 40 087501 |
[16] | Zhang Y L, Zhang Y Y, Ni J Y, Yang J H, Xiang H J, and Gong X G 2021 Chin. Phys. Lett. 38 027501 |
[17] | Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X D 2018 Science 360 1214 |
[18] | Zhang Y, Xu H, Feng J, Wu H, Yu G, and Han X 2021 Chin. Phys. B 30 118504 |
[19] | Li X L, Lü J T, Zhang J, You L, Su Y R, and Tsymbal E Y 2019 Nano Lett. 19 5133 |
[20] | Yan Z, Zhang R, Dong X, Qi S, and Xu X 2020 Phys. Chem. Chem. Phys. 22 14773 |
[21] | Pan L, Huang L, Zhong M, Jiang X W, Deng H X, Li J, Xia J B, and Wei Z 2018 Nanoscale 10 22196 |
[22] | Lin Z Z and Chen X 2020 Adv. Electron. Mater. 6 1900968 |
[23] | Zhang L, Li T, Li J, Jiang Y, Yuan J, and Li H 2020 J. Phys. Chem. C 124 27429 |
[24] | Zhou J, Qiao J, Duan C G, Bournel A, Wang K L, and Zhao W 2019 ACS Appl. Mater. & Interfaces 11 17647 |
[25] | Pan L, Wen H, Huang L, Chen L, Deng H X, Xia J B, and Wei Z 2019 Chin. Phys. B 28 107504 |
[26] | Wu X M, Feng Y L, Li S, Zhang B Q, and Gao G Y 2020 J. Phys. Chem. C 124 16127 |
[27] | Feng Y L, Liu N, and Gao G Y 2021 Appl. Phys. Lett. 118 112407 |
[28] | Feng Y L, Wu X M, Hu L, and Gao G Y 2020 J. Mater. Chem. C 8 14353 |
[29] | Feng Y L, Wu X M, and Gao G Y 2020 Appl. Phys. Lett. 116 022402 |
[30] | Dong X, Jia X, Yan Z, Shen X, Li Z, Qiao Z, and Xu X 2023 Chin. Phys. Lett. 40 087301 |
[31] | Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, and Wang K Y 2022 Chin. Phys. Lett. 39 128501 |
[32] | Lan G, Xu H, Zhang Y, Cheng C, He B, Li J, He C, Wan C, Feng J, Wei H, Zhang J, Han X, and Yu G 2023 Chin. Phys. Lett. 40 058501 |
[33] | Wang Z A, Zhang X M, Zhu W K, Yan F G, Liu P F, Yuan Z, and Wang K Y 2023 Chin. Phys. Lett. 40 077201 |
[34] | Zhou X H, Brzostowski B, Durajski A, Liu M Z, Xiang J, Jiang T R, Wang Z Q, Chen S W, Li P G, Zhong Z H, Drzewiński A, Jarosik M, Szczęśniak R, Lai T S, Guo D H, and Zhong D Y 2020 J. Phys. Chem. C 124 9416 |
[35] | Zhou X, Jiang T, Tao Y, Ji Y, Wang J, Lai T, and Zhong D 2024 ACS Nano 18 10912 |
[36] | Torun E, Sahin H, Singh S K, and Peeters F M 2015 Appl. Phys. Lett. 106 192404 |
[37] | Ceyhan E, Yagmurcukardes M, Peeters F M, and Sahin H 2021 Phys. Rev. B 103 014106 |
[38] | Ghosh R K, Jose A, and Kumari G 2021 Phys. Rev. B 103 054409 |
[39] | Kulish V V and Huang W 2017 J. Mater. Chem. C 5 8734 |
[40] | Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A, and Hennig R G 2017 Nano Lett. 17 5251 |
[41] | Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 |
[42] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[43] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[44] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[45] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[46] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[47] | Taylor J, Guo H, and Wang J 2001 Phys. Rev. B 63 245407 |
[48] | Taylor J, Guo H, and Wang J 2001 Phys. Rev. B 63 121104 |
[49] | Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 |
[50] | Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512 |
[51] | Jauho A P, Wingreen N S, and Meir Y 1994 Phys. Rev. B 50 5528 |
[52] | Yuasa S, Nagahama T, Fukushima A, Suzuki Y, and Ando K 2004 Nat. Mater. 3 868 |
[53] | Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, and Yang S H 2004 Nat. Mater. 3 862 |
[54] | Su Y, Li X, Zhu M, Zhang J, You L, and Tsymbal E Y 2021 Nano Lett. 21 175 |
[55] | Yadav M K and Gupta S K 2022 Micro Nanostruct. 165 207192 |
[56] | Rolf-Pissarczyk S, Yan S C, Malavolti L, Burgess J A J, McMurtrie G, and Loth S 2017 Phys. Rev. Lett. 119 217201 |
[57] | Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, and van der Zant H S J 2014 Nat. Nanotechnol. 9 830 |
[58] | Rashidi M, Taucer M, Ozfidan I, Lloyd E, Koleini M, Labidi H, Pitters J L, Maciejko J, and Wolkow R A 2016 Phys. Rev. Lett. 117 276805 |
[59] | Dong Q X, Hu R, Fan Z Q, and Zhang Z H 2018 Carbon 130 206 |
[60] | Kuang G, Chen S Z, Yan L, Chen K Q, Shang X, Liu P N, and Lin N 2018 J. Am. Chem. Soc. 140 570 |
[61] | Duret C and Ueno S 2012 NTN Tech. Rev. 80 64 (in Japanese) |
[62] | Mao S N, Chen Y H, Liu F et al. 2006 IEEE Trans. Magn. 42 97 |
[63] | Dave R W, Steiner G, Slaughter J M et al. 2006 IEEE Trans. Magn. 42 1935 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|