CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Centimeter-Scale Above-Room-Temperature Ferromagnetic Fe$_{3}$GaTe$_{2}$ Thin Films by Molecular Beam Epitaxy |
Taikun Wang1,2†, Yongkang Xu1,2†, Yu Liu1,2, Xingze Dai1,2, Pengfei Yan1,2, Jin Wang1,2, Shuanghai Wang1,2, Yafeng Deng1,2, Kun He1,2, Caitao Li1,2, Ziang Wang1, Wenqin Zou3, Rongji Wen4, Yufeng Hao4, and Liang He1,2* |
1School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China 2National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China 3Department of Physics, Nanjing University, Nanjing 210000, China 4College of Engineering and Applied Science, Nanjing University, Nanjing 210000, China
|
|
Cite this article: |
Taikun Wang, Yongkang Xu, Yu Liu et al 2024 Chin. Phys. Lett. 41 107502 |
|
|
Abstract Fe$_{3}$GaTe$_{2}$, as a layered ferromagnetic material, has a Curie temperature ($T_{\rm c}$) higher than room temperature, making it the key material in next-generation spintronic devices. To be used in practical devices, large-sized high-quality Fe$_{3}$GaTe$_{2}$ thin films need to be prepared. Here, the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology. Furthermore, the $T_{\rm c}$ of the samples raises as the film thickness increases, and reaches 367 K when the film thickness is 60 nm. This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe$_{3}$GaTe$_{2}$.
|
|
Received: 22 July 2024
Editors' Suggestion
Published: 18 October 2024
|
|
PACS: |
75.50.-y
|
(Studies of specific magnetic materials)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
|
|
|
[1] | Guan M, Wang L, Zhao S, Zhou Z, Dong G, Su W, Min T, Ma J, Hu Z, Ren W, Ye Z G, Nan C W, and Liu M 2018 Adv. Mater. 30 1802902 |
[2] | Jin W, Zhang G J, Wu H, Yang L, Zhang W F, and Chang H X 2023 Chin. Phys. Lett. 40 057301 |
[3] | Kim S K, Beach G S D, Lee K J, Ono T, Rasing T, and Yang H 2022 Nat. Mater. 21 24 |
[4] | Wu Y, Wang W, Pan L, and Wang K L 2022 Adv. Mater. 34 2105266 |
[5] | Zhang Y Y, Ren X L, Liu R Z, Chen Z H, Wu X Z, Pang J, Wang W, Lan G B, Watanabe K, Taniguchi T, Shi Y G, Yu G Q, and Shao Q M 2024 arXiv:2405.06250 [cond-mat.mes-hall] |
[6] | Guo Y, Liu N S, Zhao Y Y, Jiang X, Zhou S, and Zhao J J 2020 Chin. Phys. Lett. 37 107506 |
[7] | Sivadas N, Okamoto S, Xu X D, Fennie C J, and Xiao D 2018 Nano Lett. 18 7658 |
[8] | Zhang P Y, Chung T F, Li Q W, Wang S Q, Wang Q J, Huey W L B, Yang S, Goldberger J E, Yao J, and Zhang X 2022 Nat. Mater. 21 1373 |
[9] | Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K F, Jiang S W, Mak K F, Shan J, Buhrman R A, and Ralph D C 2020 Nano Lett. 20 7482 |
[10] | Hao Z Q, Li H W, Zhang S H, Li X T, Lin G T, Luo X, Sun Y P, Liu Z, and Wang Y Y 2018 Sci. Bull. 63 825 |
[11] | Zhu W X, Song C, Han L, Guo T W, Bai H, and Pan F 2022 Nat. Commun. 13 6428 |
[12] | Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M, and Wu X J 2022 Adv. Mater. 34 2106172 |
[13] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94 |
[14] | Feng H L, Li Y, Shi Y G, Xie H Y, Li Y Q, and Xu Y 2022 Chin. Phys. Lett. 39 077501 |
[15] | Liu X Q, Huang P Y, Xia Y, Gao L, Liao L Y, Cui B S, Backes D, van der Laan G, Hesjedal T, Ji Y C, Chen P, Zhang Y F, Wu F, Wang M X, Zhang J W, Yu G Q, Song C, Chen Y L, Liu Z K, Yang Y M, Peng Y, Li G, Yao Q, and Kou X F 2023 Adv. Funct. Mater. 33 2304454 |
[16] | Xian J J, Wang C, Nie J H, Li R, Han M J, Lin J H, Zhang W H, Liu Z Y, Zhang Z M, Miao M P, Yi Y F, Wu S W, Chen X D, Han J B, Xia Z C, Ji W, and Fu Y S 2022 Nat. Commun. 13 257 |
[17] | Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X Q, Du J, He L, Zhang R, Bian G, and Xu Y B 2021 Nat. Commun. 12 2492 |
[18] | Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, and Chang H X 2022 Nat. Commun. 13 5067 |
[19] | Kajale S N, Nguyen T, Chao C A, Bono D C, Boonkird A, Li M D, and Sarkar D 2024 Nat. Commun. 15 1485 |
[20] | Pan Z C, Li D, Ye X G, Chen Z, Chen Z H, Wang A Q, Tian M L, Yao G J, Liu K H, and Liao Z M 2023 Sci. Bull. 68 2743 |
[21] | Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, and Qiao S 2023 Chin. Phys. Lett. 40 087501 |
[22] | Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, and Wang K Y 2022 Chin. Phys. Lett. 39 128501 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|