Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 107401    DOI: 10.1088/0256-307X/41/10/107401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Simple Urea Approach to N-Doped $\alpha$-Mo$_{2}$C with Enhanced Superconductivity
Longfu Li1, Lei Shi2, Lingyong Zeng1, Kuan Li1, Peifeng Yu1, Kangwang Wang1, Chao Zhang1, Rui Chen1, Zaichen Xiang1, Yunwei Zhang2, and Huixia Luo1*
1School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite & Functional Materials, Sun Yat-Sen University, Guangzhou 510275, China
2School of Physics, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, Guangzhou 510275, China
Cite this article:   
Longfu Li, Lei Shi, Lingyong Zeng et al  2024 Chin. Phys. Lett. 41 107401
Download: PDF(3169KB)   PDF(mobile)(3224KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature ($T_{\rm c}$) of the parent superconducting materials. Here, a new simple urea approach is developed to synthesize the N-doped $\alpha$-Mo$_{2}$C. Benefiting from the simple urea method, a broad superconducting dome is found in the Mo$_{2}$C$_{1-x}$N$_{x}$ ($0\leqslant x \leqslant 0.49$) compositions. X-ray diffraction results show that the structure of $\alpha$-Mo$_{2}$C remains unchanged and there is a variation of lattice parameters with nitrogen doping. Resistivity, magnetic susceptibility, and heat capacity measurement results confirm that $T_{\rm c}$ was strongly increased from 2.68 K ($x=0$) to 7.05 K ($x=0.49$). First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening, which enhances electron–phonon coupling. This results in an increase in $T_{\rm c}$ and a sharp rise in the upper critical field. Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides.
Received: 12 August 2024      Published: 26 October 2024
PACS:  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  74.25.F- (Transport properties)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  74.62.-c (Transition temperature variations, phase diagrams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/107401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/107401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Longfu Li
Lei Shi
Lingyong Zeng
Kuan Li
Peifeng Yu
Kangwang Wang
Chao Zhang
Rui Chen
Zaichen Xiang
Yunwei Zhang
and Huixia Luo
[1] Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P, and Fan H J 2016 Adv. Sci. 3 1500286
[2] Hardy G F and Hulm J K 1954 Phys. Rev. 93 1004
[3] Matthias B T and Hulm J K 1952 Phys. Rev. 87 799
[4] Willens R H, Buehler E, and Matthias B T 1967 Phys. Rev. 159 327
[5] Morton N, James B W, Wostenholm G H, Pomfret D G, Davies M R, and Dykins J L 1971 J. Less-Common Met. 25 97
[6] Ge Y, Ma S, Bao K, Tao Q, Zhao X, Feng X, Li L, Liu B, Zhu P, and Cui T 2019 Inorg. Chem. Front. 6 1282
[7] Ge Y, Song H, Bao K, Ma S, Li L, Tao Q, Zhu P, Liu B, Duan D, and Cui T 2021 J. Alloys Compd. 881 160631
[8] Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, and Barsoum M W 2013 J. Am. Chem. Soc. 135 15966
[9] Naguib M, Mochalin V N, Barsoum M W, and Gogotsi Y 2014 Adv. Mater. 26 992
[10] Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F, and Talapin D V 2020 Science 369 979
[11] Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y, and Barsoum M W 2016 Adv. Funct. Mater. 26 3118
[12] Meshkian R, Näslund L Å, Halim J, Lu J, Barsoum M W, and Rosen J 2015 Scr. Mater. 108 147
[13] Anasori B, Lukatskaya M R, and Gogotsi Y 2017 Nat. Rev. Mater. 2 16098
[14] Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M, and Ren W C 2015 Nat. Mater. 14 1135
[15] Fan Y, Xu C, Liu X, Ma C, Yin Y, Cheng H M, Ren W, and Li X 2020 NPG Asia Mater. 12 60
[16] Caylan O R and Buke G C 2021 Sci. Rep. 11 8247
[17] Ravuri S, Wrobel P S, Gorantla S, Bazioti C, Sunding M F, Lis K, Jedrzejewski R, Sartori S, Diplas S, Gunnæs A E, and Bachmatiuk A 2024 Nanotechnology 35 155601
[18] Zeng L Y, Hu X W, Zhou Y Z, Liu Y, Boswell M, Xie W W, Li K, Li L F, Yu P F, Zhang C, Guo W M, Yao D X, and Luo H X 2023 Innovat. Mater. 1 100042
[19] Margine E R and Giustino F 2014 Phys. Rev. B 90 014518
[20] Bogoljubov N N, Tolmachov V V, and Širkov D V 1958 Fortschr. Phys. 6 605
[21] Suhl H, Matthias B T, and Walker L R 1959 Phys. Rev. Lett. 3 552
[22] Kawashima T, Takayama-Muromachi E, and McMillan P F 2007 Physica C 460–462 651
[23] Lee J, Park J K, Lee J W, Heo Y, Oh Y S, Lee J S, Cho J, and Jeen H 2020 RSC Adv. 10 44339
[24] Yin X Z, Wang H, Wang Q H, Jiao N, Ni M Y, Zheng M M, Lu H Y, and Zhang P 2023 Chin. Phys. Lett. 40 097404
[25] Zhao N N, Guo P J, Lu X Q, Han Q, Liu K, and Lu Z Y 2020 Phys. Rev. B 101 195144
[26] Wei H, Wang J, Lin Q, Zou Y, Chen X, Zhao H, Li J, Jin H, Lei Y, and Wang S 2021 Nano Energy 86 106047
[27] Jing S, Zhang L, Luo L, Lu J, Yin S, Shen P K, and Tsiakaras P 2018 Appl. Catal. B: Environ. 224 533
[28] Chi J Q, Yan K L, Gao W K, Dong B, Shang X, Liu Y R, Li X, Chai Y M, and Liu C G 2017 J. Alloys Compd. 714 26
[29] Jiang R, Fan J, Hu L, Dou Y, Mao X, and Wang D 2018 Electrochim. Acta 261 578
[30] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Giordano C, Erpen C, Yao W T, Milke B, and Antonietti M 2009 Chem. Mater. 21 5136
[36] Jin T, Sang X, Unocic R R, Kinch R T, Liu X, Hu J, Liu H, and Dai S 2018 Adv. Mater. 30 1707512
[37] Chen P, Xiao T Y, Qian Y H, Li S S, and Yu S H 2013 Adv. Mater. 25 3192
[38] Li X Z, Fang Y Y, Lin X Q, Tian M, An X C, Fu Y, Li R, Jin J, and Ma J T 2015 J. Mater. Chem. A 3 17392
[39] Zhao Y, Kamiya K, Hashimoto K, and Nakanishi S 2015 J. Am. Chem. Soc. 137 110
[40] Pan L F, Li Y H, Yang S, Liu P F, Yu M Q, and Yang H G 2014 Chem. Commun. 50 13135
[41] Liu Y, Yu G, Li G D, Sun Y, Asefa T, Chen W, and Zou X 2015 Angew. Chem. Int. Ed. 54 10752
[42] Zhang Z, Fang Y Q, Wang D, Zhang S N, Mu G, and Huang F Q 2020 J. Mater. Chem. C 8 2682
[43] Clogston A M 1962 Phys. Rev. Lett. 9 266
[44] Zeng L Y, Hu X W, Boubeche M, Li K, Li L F, Yu P F, Wang K W, Zhang C, Jin K, Yao D X, and Luo H X 2023 Sci. Chin. Phys. Mech. & Astron. 66 277412
[45] He Y Y, You Y X, Zeng L Y, Guo S, Zhou H W, Li K, Huang Y H, Yu P F, Zhang C, Cao C, and Luo H X 2022 Phys. Rev. B 105 054513
[46] Wu J, Xiao G, Zhu Q, Liu B, Cui Y, Wu S, Cao G H, and Ren Z 2022 Inorg. Chem. Front. 9 4594
[47] Zhu X, Han F, Mu G, Cheng P, Tang J, Ju J, Tanigaki K, and Wen H H 2010 Phys. Rev. B 81 104525
[48] Luo H X, Xie W W, Tao J, Pletikosic I, Valla T, Sahasrabudhe G S, Osterhoudt G, Sutton E, Burch K S, Seibel E M, Krizan J W, Zhu Y M, and Cava R J 2016 Chem. Mater. 28 1927
[49] McMillan W L 1968 Phys. Rev. 167 331
[50] Zeng L Y, Hu X W, Guo S, Lin G T, Song J, Li K, He Y Y, Huang Y H, Zhang C, Yu P F, Ma J, Yao D X, and Luo H X 2022 Phys. Rev. B 106 134501
[51] Xiao G R, Zhu Q Q, Cui Y W, Yang W Z, Li B Z, Wu S Q, Cao G H, and Ren Z 2021 Sci. Chin. Phys. Mech. & Astron. 64 107411
[52] Zhou Y X, Li B, Lou Z F, Chen H C, Chen Q, Xu B J, Wu C X, Du J H, Yang J H, Wang H D, and Fang M H 2021 Sci. Chin. Phys. Mech. & Astron. 64 247411
[53] Boubeche M, Yu J, Chushan L, Huichao W, Zeng L Y, He Y Y, Wang X P, Su W Z, Wang M, Yao D X, Wang Z J, and Luo H X 2021 Chin. Phys. Lett. 38 037401
[54] Klein O 1952 Nature 169 578
[55] Savini G, Ferrari A C, and Giustino F 2010 Phys. Rev. Lett. 105 037002
[56] Jin X T, Yan X W, and Gao M 2020 Phys. Rev. B 101 134518
Related articles from Frontiers Journals
[1] Shi-Wei Ye, Song-Yuan Geng, Han-Pu Liang, Xie Zhang, and Su-Huai Wei. Origin of the Disparity between the Stability of Transmutated Mix-Cation and Mix-Anion Compounds[J]. Chin. Phys. Lett., 2024, 41(5): 107401
[2] Guo-Yu Xian, Pei-Jie Jiang, Yu-Hui Li, Xing-Wei Shi, Guang-Yuan Han, Hai-Tao Yang, Yu-Yang Zhang, Xiao Lin, and Hong-Jun Gao. Coexistence of Unidirectional Charge Density Waves in LaTe$_{3}$[J]. Chin. Phys. Lett., 2023, 40(8): 107401
[3] Peng-Tao Yang, Qing-Xin Dong, Peng-Fei Shan, Zi-Yi Liu, Jian-Ping Sun, Zhi-Ling Dun, Yoshiya Uwatoko, Gen-Fu Chen, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of Superconductivity on the Border of Antiferromagnetic Order in RbMn$_{6}$Bi$_{5}$ under High Pressure: A New Family of Mn-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(6): 107401
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 107401
[5] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 107401
[6] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 107401
[7] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 107401
[8] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 107401
[9] Xiao-Chuan Wang, Jia Yu, Bin-Bin Ruan, Bo-Jin Pan, Qing-Ge Mu, Tong Liu, Kang Zhao, Gen-Fu Chen, Zhi-An Ren. Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6K by Th and F Codoping[J]. Chin. Phys. Lett., 2017, 34(7): 107401
[10] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 107401
[11] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 107401
[12] MU Gang, ZENG Bin, CHENG Peng, WANG Zhao-Sheng, FANG Lei, SHEN Bing, SHAN Lei, REN Cong, WEN Hai-Hu. Sizable Residual Quasiparticle Density of States Induced by Impurity Scattering Effect in Ba(Fe1-xCox)2As2 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(3): 107401
[13] ZHENG Ping, CHEN Gen-Fu, LI Zheng, HU Wan-Zheng, DONG Jing, LI Gang, WANG Nan-Lin, LUO Jian-Lin. Magnetoresistance in Parent Pnictide AFe2As2(A=Sr, Ba)[J]. Chin. Phys. Lett., 2009, 26(10): 107401
[14] TAO Qian, SHEN Jing-Qin, LI Lin-Jun, LIN Xiao, LUO Yong-Kang, CAO Guang-Han, XU Zhu-An. Upper Critical Fields and Anisotropy of BaFe1.9Ni0.1As2 Single Crystals[J]. Chin. Phys. Lett., 2009, 26(9): 107401
[15] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 107401
Viewed
Full text


Abstract