Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 107102    DOI: 10.1088/0256-307X/41/10/107102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Cryogenic Digital Image Correlation as a Probe of Strain in Iron-Based Superconductors
Ziye Mo, Chunyi Li, Wenting Zhang, Chang Liu, Yongxin Sun, Ruixian Liu, and Xingye Lu*
Center for Advanced Quantum Studies, School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
Cite this article:   
Ziye Mo, Chunyi Li, Wenting Zhang et al  2024 Chin. Phys. Lett. 41 107102
Download: PDF(1541KB)   PDF(mobile)(1569KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Uniaxial strain is a powerful tuning parameter that can control symmetry and anisotropic electronic properties in iron-based superconductors. However, accurately characterizing anisotropic strain can be challenging and complex. Here, we utilize a cryogenic optical system equipped with a high-spatial-resolution microscope to characterize surface strains in iron-based superconductors using the digital image correlation method. Compared with other methods such as high-resolution x-ray diffraction, strain gauge, and capacitive sensor, digital image correlation offers a non-contact full-field measurement approach, acting as an optical virtual strain gauge that provides high spatial resolution. The results measured on detwinned BaFe$_2$As$_2$ are quantitatively consistent with the distortion measured by x-ray diffraction and neutron Larmor diffraction. These findings highlight the potential of cryogenic digital image correlation as an effective and accessible tool for probing the isotropic and anisotropic strains, facilitating applications of uniaxial strain tuning in research of quantum materials.
Received: 18 August 2024      Published: 18 October 2024
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.45.Lr (Charge-density-wave systems)  
  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  74.25.-q (Properties of superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/107102       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/107102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ziye Mo
Chunyi Li
Wenting Zhang
Chang Liu
Yongxin Sun
Ruixian Liu
and Xingye Lu
[1] Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179
[2] Dai P C 2015 Rev. Mod. Phys. 87 855
[3] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J, and Kotliar G 2022 Nature 601 35
[4] Fernandes R M, Chubukov A V, and Schmalian J 2014 Nat. Phys. 10 97
[5] Böhmer A E, Chu J H, Lederer S, and Yi M 2022 Nat. Phys. 18 1412
[6] Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, and Fisher I R 2010 Science 329 824
[7] Chu J H, Kuo H H, Analytis J G, and Fisher I R 2012 Science 337 710
[8] Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, and Fisher I R 2016 Science 352 958
[9] Nandi S, Kim M G, Kreyssig A, Fernandes R M, Pratt D K, Thaler A, Ni N, Bud'ko S L, Canfield P C, Schmalian J, McQueeney R J, and Goldman A I 2010 Phys. Rev. Lett. 104 057006
[10] Lu X, Gretarsson H, Zhang R, Liu X, Luo H, Tian W, Laver M, Yamani Z, Kim Y J, Nevidomskyy A H, Si Q, and Dai P 2013 Phys. Rev. Lett. 110 257001
[11] Coldea A I 2021 Front. Phys. 8 594500
[12] Liu R X, Zhang W L, Wei Y, Tao Z, Asmara T C, Li Y, Strocov V N, Yu R, Si Q M, Schmitt T, and Lu X Y 2024 Phys. Rev. Lett. 132 016501
[13] Hosoi S, Matsuura K, Ishida K et al. 2016 Proc. Natl. Acad. Sci. USA 113 8139
[14] Worasaran T, Ikeda M S, Palmstrom J C, Straquadine J A W, Kivelson S A, and Fisher I R 2021 Science 372 973
[15] Ikeda M S, Worasaran T, Palmstrom J C, Straquadine J A W, Walmsley P, and Fisher I R 2018 Phys. Rev. B 98 245133
[16] Malinowski P, Jiang Q N, Sanchez J J, Mutch J, Liu Z Y, Went P, Liu J, Ryan P J, Kim J W, and Chu J H 2020 Nat. Phys. 16 1189
[17] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P, and Hicks C W 2021 Phys. Rev. X 11 021038
[18] Zhao Z N, Hu D, Fu X, Zhou K J, Gu Y H, Tan G T, Lu X Y, and Dai P C 2023 arXiv:2305.04424 [cond-mat.supr-con]
[19] Fernandes R M and Millis A J 2013 Phys. Rev. Lett. 111 127001
[20] Kang J, Chubukov A V, and Fernandes R M 2018 Phys. Rev. B 98 064508
[21] Ghosh S, Ikeda M S, Chakraborty A R, Worasaran T, Theuss F, Peralta L B, Lozano P M, Kim J W, Ryan P J, Ye L, Kapitulnik A, Kivelson S A, Ramshaw B J, Fernandes R M, and Fisher I R 2024 arXiv:2402.17945 [cond-mat.supr-con]
[22] Sanchez J J, Malinowski P, Mutch J, Liu J, Kim J W, Ryan P J, and Chu J H 2021 Nat. Mater. 20 1519
[23] Kim M G, Fernandes R M, Kreyssig A, Kim J W, Thaler A, Bud'ko S L, Canfield P C, McQueeney R J, Schmalian J, and Goldman A I 2011 Phys. Rev. B 83 134522
[24] Lu X, Tseng K F, Keller T, Zhang W, Hu D, Song Y, Man H, Park J T, Luo H, Li S, Nevidomskyy A H, and Dai P 2016 Phys. Rev. B 93 134519
[25] Qian T M, Christensen M H, Hu C W, Saha A, Andersen B M, Fernandes R M, Birol T, and Ni N 2021 Phys. Rev. B 104 144506
[26] Blaber J, Adair B, and Antoniou A 2015 Exp. Mech. 55 1105
[27] Jones E M C and Iadicola M A 2018 A Good Practices Guide for Digital Image Correlation (International Digital Image Correlation Society)
[28] Sunko V, Morales E A, Marković I, Barber M E, Milosavljević D, Mazzola F, Sokolov D A, Kikugawa N, Cacho C, Dudin P, Rosner H, Hicks C W, King P D C, and Mackenzie A P 2019 npj Quantum Mater. 4 46
[29] Gallo-Frantz A, Jacques V L R, Sinchenko A A, Ghoneim D, Ortega L, Godard P, Renault P O, Hadj-Azzem A, Lorenzo J E, Monceau P, Thiaudière D, Grigoriev P D, Bellec E, and Le Bolloc'h D 2024 Nat. Commun. 15 3667
[30] Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q M, and Dai P C 2014 Science 345 657
[31] Lu X Y, Zhang W L, Tseng Y, Liu R X, Tao Z, Paris E, Liu P P, Chen T, Strocov V N, Song Y, Yu R, Si Q M, Dai P C, and Schmitt T 2022 Nat. Phys. 18 806
[32] Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, and Prozorov R 2016 Phys. Rev. Lett. 117 127001
[33] Yang X R, Tang Q, Zhou Q Y, Wang H P, Li Y, Fu X, Zhang J W, Song Y, Yuan H Q, Dai P C, and Lu X Y 2023 Chin. Phys. B 32 127101
Related articles from Frontiers Journals
[1] Yi Wu, Yongjun Zhang, Sailong Ju, Yong Hu, Yanen Huang, Yanan Zhang, Huali Zhang, Hao Zheng, Guowei Yang, Evrard-Ouicem Eljaouhari, Baopeng Song, Nicholas C. Plumb, Frank Steglich, Ming Shi, Gertrud Zwicknagl, Chao Cao, Huiqiu Yuan, and Yang Liu. Fermi Surface Nesting with Heavy Quasiparticles in the Locally Noncentrosymmetric Superconductor CeRh$_{2}$As$_{2}$[J]. Chin. Phys. Lett., 2024, 41(9): 107102
[2] Yidian Li, Xian Du, Yantao Cao, Cuiying Pei, Mingxin Zhang, Wenxuan Zhao, Kaiyi Zhai, Runzhe Xu, Zhongkai Liu, Zhiwei Li, Jinkui Zhao, Gang Li, Yanpeng Qi, Hanjie Guo, Yulin Chen, and Lexian Yang. Electronic Correlation and Pseudogap-Like Behavior of High-Temperature Superconductor La$_{3}$Ni$_2$O$_{7}$[J]. Chin. Phys. Lett., 2024, 41(8): 107102
[3] R. Wang and Z. Song. Flat Band and $\eta$-Pairing States in a One-Dimensional Moiré Hubbard Model[J]. Chin. Phys. Lett., 2024, 41(4): 107102
[4] Wei Wang, Zhao-Yang Dong, Shun-Li Yu, and Jian-Xin Li. Spectrum of the Hole Excitation in Spin-Orbit Mott Insulator Na$_{2}$IrO$_{3}$[J]. Chin. Phys. Lett., 2023, 40(8): 107102
[5] Xiangjian Qian and Mingpu Qin. Augmenting Density Matrix Renormalization Group with Disentanglers[J]. Chin. Phys. Lett., 2023, 40(5): 107102
[6] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 107102
[7] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 107102
[8] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 107102
[9] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 107102
[10] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 107102
[11] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 107102
[12] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 107102
[13] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 107102
[14] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 107102
[15] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 107102
Viewed
Full text


Abstract