Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 107201    DOI: 10.1088/0256-307X/41/10/107201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Carrier-Density-Determined Magnetoresistance in Semimetal SrIrO$_{3}$
Liang Yang1,2†, Biao Wu1,2†, Xin Liu1,2,3, Mingyu Wang1,2, Congli He1,2*, Shouguo Wang1,4, and Jinxing Zhang1,2*
1School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
2Key Laboratory of Multiscale Spin Physics (Ministry of Education), Beijing Normal University, Beijing 100875, China
3SwissFEL, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
4Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
Cite this article:   
Liang Yang, Biao Wu, Xin Liu et al  2024 Chin. Phys. Lett. 41 107201
Download: PDF(2322KB)   PDF(mobile)(2334KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract SrIrO$_{3}$, a Dirac material with a strong spin-orbit coupling (SOC), is a platform for studying topological properties in strongly correlated systems, where its band structure can be modulated by multiple factors, such as crystal symmetry, elements doping, oxygen vacancies, magnetic field, and temperature. Here, we find that the engineered carrier density plays a critical role on the magnetoelectric transport properties of the topological semimetal SrIrO$_{3}$. The decrease of carrier density subdues the weak localization and the associated negative magnetoresistance, while enhancing the SOC-induced weak anti-localization. Notably, the sample with the lowest carrier density exhibits high-field positive magnetoresistance, suggesting the presence of a Dirac cone. In addition, the anisotropic magnetoresistance indicates the anisotropy of the electronic structure near the Fermi level. The engineering of carrier density provides a general strategy to control the Fermi surface and electronic structure in topological materials.
Received: 17 June 2024      Published: 22 October 2024
PACS:  72.15.Rn (Localization effects (Anderson or weak localization))  
  73.43.Qt (Magnetoresistance)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/107201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/107201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liang Yang
Biao Wu
Xin Liu
Mingyu Wang
Congli He
Shouguo Wang
and Jinxing Zhang
[1] Zhao T Y, Wang A Q, Ye X G, Liu X Y, Liao X, and Liao Z M 2023 Phys. Rev. Lett. 131 186302
[2] Shoron O F, Kealhofer D A, Goyal M, Schumann T, Burkov A A, and Stemmer S 2021 Appl. Phys. Lett. 119 171907
[3] Suraj T S, Omar G J, Jani H, Juvaid M M, Hooda S, Chaudhuri A, Rusydi A, Sethupathi K, Venkatesan T, Ariando A, and Rao M S R 2020 Phys. Rev. B 102 125145
[4] Yamada R, Fujioka J, Kawamura M, Sakai S, Hirayama M, Arita R, Okawa T, Hashizume D, Hoshino M, and Tokura Y 2019 Phys. Rev. Lett. 123 216601
[5] Liu Y, Tiwari R, Narayan A, Jin Z, Yuan X, Zhang C, Chen F, Li L, Xia Z, Sanvito S, Zhou P, and Xiu F 2018 Phys. Rev. B 97 085303
[6] Li C Z, Wang L X, Liu H, Wang J, Liao Z M, and Yu D P 2015 Nat. Commun. 6 10137
[7] Hu Z, Deng J, Li H, Ogunbunmi M O, Tong X, Wang Q, Graf D, Pudełko W R, Liu Y, Lei H, Bobev S, Radovic M, Wang Z, and Petrovic C 2023 npj Quantum Mater. 8 20
[8] Ren Z Y, Miao J, Zhang L P, Lv Z L, Cao J P, Jakob G, Zhou J, Chen J K, Meng K K, Li H F, and Jiang Y 2021 Appl. Phys. Lett. 119 112402
[9] Guo C M, Zhang H, and Cheng X L 2020 Physica B 596 412391
[10] Besara T, Rhodes D A, Chen K W, Das S, Zhang Q R, Sun J, Zeng B, Xin Y, Balicas L, Baumbach R E, Manousakis E, Singh D J, and Siegrist T 2016 Phys. Rev. B 93 245152
[11] Zhang L Y, Liang Q F, Xiong Y, Zhang B B, Gao L, Li H D, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Wang Z M, Lin Y, and Chen Y F 2015 Phys. Rev. B 91 035110
[12] Wang J, Yang H, Ding L, You W, Xi C, Cheng J, Shi Z, Cao C, Luo Y, Zhu Z, Dai J, Tian M, and Li Y 2019 npj Quantum Mater. 4 58
[13] Tian Y, Wei L, Zhang Q, Huang H, Zhang Y, Zhou H, Ma F, Gu L, Meng S, Chen L Q, Nan C W, and Zhang J 2018 Nat. Commun. 9 3809
[14] Zhang L, Pang B, Chen Y B, and Chen Y 2018 Crit. Rev. Solid State Mater. Sci. 43 367
[15] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, and Tokura Y 2012 Nat. Mater. 11 103
[16] Liu C, Wu S, Zhang J, Chen J, Ding J, Ma J, Zhang Y, Sun Y, Tu S, Wang H, Liu P, Li C, Jiang Y, Gao P, Yu D, Xiao J, Duine R, Wu M, Nan C W, Zhang J, and Yu H 2019 Nat. Nanotechnol. 14 691
[17] Chen Y, Lu Y M, and Kee H Y 2015 Nat. Commun. 6 6593
[18] Sweers M E, Ma Q, Donahue C M, Nordlund D, Haile S M, and Seitz L C 2024 Phys. Rev. Mater. 8 055801
[19] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[20] Carter J M, Shankar V V, Zeb M A, and Kee H Y 2012 Phys. Rev. B 85 115105
[21] Nie Y F, King P D C, Kim C H, Uchida M, Wei H I, Faeth B D, Ruf J P, Ruff J P C, Xie L, Pan X, Fennie C J, Schlom D G, and Shen K M 2015 Phys. Rev. Lett. 114 016401
[22] Liu Z T, Li M Y, Li Q F, Liu J S, Li W, Yang H F, Yao Q, Fan C C, Wan X G, Wang Z, and Shen D W 2016 Sci. Rep. 6 30309
[23] Marbouh N, Khodja M D, Boudali A, Chibani S, and Bentayeb A 2019 Comput. Condens. Matter 21 e00420
[24] Qasim I, Kennedy B J, and Avdeev M 2013 J. Mater. Chem. A 1 3127
[25] Zhao J G, Yang L X, Yu Y, Li F Y, Yu R C, Fang Z, Chen L C, and Jin C Q 2008 J. Appl. Phys. 103 103706
[26] Longo J M, Kafalas J A, and Arnott R J 1971 J. Solid State Chem. 3 174
[27] Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J, Dai X, Fang Z, Shi Y, and Lu L 2015 Phys. Rev. B 92 081306
[28] Liang T, Gibson Q, Ali M N, Liu M, Cava R J, and Ong N P 2015 Nat. Mater. 14 280
[29] Takiguchi K, Wakabayashi Y K, Irie H, Krockenberger Y, Otsuka T, Sawada H, Nikolaev S A, Das H, Tanaka M, Taniyasu Y, and Yamamoto H 2020 Nat. Commun. 11 4969
[30] Groenendijk D J, Manca N, de Bruijckere J, Monteiro A M R V L, Gaudenzi R, van der Zant H S J, and Caviglia A D 2020 Eur. Phys. J. Plus 135 627
[31] Groenendijk D J, Autieri C, Girovsky J, Martinez-Velarte M C, Manca N, Mattoni G, Monteiro A M R V L, Gauquelin N, Verbeeck J, Otte A F, Gabay M, Picozzi S, and Caviglia A D 2017 Phys. Rev. Lett. 119 256403
[32] Zhang L, Jiang X, Xu X, and Hong X 2020 APL Mater. 8 051108
[33] Bhat S G, Sebastian N K, and Kumar P S A 2018 Physica B 536 614
[34] Fujioka J, Okawa T, Yamamoto A, and Tokura Y 2017 Phys. Rev. B 95 121102(R)
[35] Groenendijk D J, Manca N, Mattoni G, Kootstra L, Gariglio S, Huang Y, van Heumen E, and Caviglia A D 2016 Appl. Phys. Lett. 109 041906
[36] Gruenewald J H, Nichols J, Terzic J, Cao G, Brill J W, and Seo S S A 2014 J. Mater. Res. 29 2491
[37] Xu C, Wicklein S, Sambri A, Amoruso S, Moors M, and Dittmann R 2014 J. Phys. D 47 034009
[38] Wicklein S, Sambri A, Amoruso S, Wang X, Bruzzese R, Koehl A, and Dittmann R 2012 Appl. Phys. Lett. 101 131601
[39] Liu J, Chu J H, Serrao C R, Yi D, Koralek J, Nelson C, Frontera C, Kriegner D, Horak L, Arenholz E, Orenstein J, Vishwanath A, Marti X, and Ramesh R 2013 arXiv:1305.1732v1 [cond-mat.str-el]
[40] Matsuno J, Ihara K, Yamamura S, Wadati H, Ishii K, Shankar V V, Kee H Y, and Takagi H 2015 Phys. Rev. Lett. 114 247209
[41] Wu F X, Zhou J, Zhang L Y, Chen Y B, Zhang S T, Gu Z B, Yao S H, and Chen Y F 2013 J. Phys.: Condens. Matter 25 125604
[42] Manca N, Groenendijk D J, Pallecchi I, Autieri C, Tang L M K, Telesio F, Mattoni G, McCollam A, Picozzi S, and Caviglia A D 2018 Phys. Rev. B 97 081105
[43] Biswas A, Kim K S, and Jeong Y H 2016 J. Magn. Magn. Mater. 400 36
[44] Biswas A, Kim K S, and Jeong Y H 2014 J. Appl. Phys. 116 213704
[45] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[46] Jing Y, Huang S, Zhang K, Wu J, Guo Y, Peng H, Liu Z, and Xu H Q 2016 Nanoscale 8 1879
[47] Bergmann G 1984 Phys. Rep. 107 1
[48] Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q, and Wang J 2016 Nat. Commun. 7 10301
[49] Jaiswal A K, Zaitsev A G, Singh R, Schneider R, and Fuchs D 2019 AIP Adv. 9 125034
[50] Hikami S, Larkin A I, and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[51] Zhang W, Yu R, Feng W, Yao Y, Weng H, Dai X, and Fang Z 2011 Phys. Rev. Lett. 106 156808
[52] Abrikosov A A 1998 Phys. Rev. B 58 2788
[53] Xu S, Zhou L Q, Wang X Y et al. 2020 Chin. Phys. Lett. 37 107504
[54] Fina I, Marti X, Yi D, Liu J, Chu J H, Rayan-Serrao C, Suresha S, Shick A B, Železný J, Jungwirth T, Fontcuberta J, and Ramesh R 2014 Nat. Commun. 5 4671
[55] Rushforth A W, Výborný K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Vašek P, Novák V, Olejník K, Sinova J, Jungwirth T, and Gallagher B L 2007 Phys. Rev. Lett. 99 147207
[56] Cao G, Durairaj V, Chikara S, DeLong L E, Parkin S, and Schlottmann P 2007 Phys. Rev. B 76 100402(R)
[57] Fruchter L, Schneegans O, and Li Z Z 2016 J. Appl. Phys. 120 075307
[58] Zhang L, Chen Y B, Zhang B, Zhou J, Zhang S, Gu Z, Yao S, and Chen Y 2014 J. Phys. Soc. Jpn. 83 054707
Related articles from Frontiers Journals
[1] S. M. Zhang, T. Y. He, and L. Jin. Localization Dynamics at the Exceptional Point of Non-Hermitian Creutz Ladder[J]. Chin. Phys. Lett., 2024, 41(2): 107201
[2] Junjun Xu, Yanxing Li. Eigenstate Distribution Fluctuation of a Quenched Disordered Bose–Hubbard System in Thermal-to-Localized Transitions[J]. Chin. Phys. Lett., 2019, 36(2): 107201
[3] Rong-Qiang He, Zhong-Yi Lu. Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems[J]. Chin. Phys. Lett., 2018, 35(2): 107201
[4] Bo-Ya Miao, Yu An. Localization in an Acoustic Cavitation Cloud[J]. Chin. Phys. Lett., 2017, 34(3): 107201
[5] PANG Fei. Magneto-Transport Properties of Insulating Bulk States in Bi(111) Films[J]. Chin. Phys. Lett., 2015, 32(02): 107201
[6] HU Dong-Sheng, ZHANG Yan-Ling, YIN Xiao-Gang, ZHU Chen-Ping, ZHANG Yong-Mei. Resonant Tunneling States of a Pairing Ladder with Random Dimer Chains[J]. Chin. Phys. Lett., 2012, 29(2): 107201
[7] ZHAO Wei**, DING Jian-Wen . Reproduced Giant Localization Length of Two-Side Surface Disordered Nanowires with Long-Range Correlation[J]. Chin. Phys. Lett., 2011, 28(10): 107201
[8] PANG Fei, YIN Shu-Li, LIANG Xue-Jin, CHEN Dong-Min . Anomalous Magneto-Transport Properties of Epitaxial Single-Crystal Bi Films on Si(111)[J]. Chin. Phys. Lett., 2010, 27(10): 107201
[9] LIU Hai, LIU Jin-Song, LÜ, Jian-Tao, WANG Ke-Jia. Morphology Dependence of Power Spectra for Different Polarized States from Two-Dimensional Active Random Media[J]. Chin. Phys. Lett., 2009, 26(5): 107201
[10] SHENG Lei-Mei, GAO Wei, CAO Shi-Xun, ZHANG Jin-Cang. Magnetoresistance of Multiwalled Carbon Nanotube Yarns[J]. Chin. Phys. Lett., 2008, 25(9): 107201
[11] GUO Zi-Zheng. Entanglement in One-Dimensional Anderson Model with Long-Range Correlated Disorder[J]. Chin. Phys. Lett., 2008, 25(3): 107201
[12] ZHONG Yan-Ming, XIONG Shi-Jie. Nonadiabatic Geometric Phase and Induced Persistent Current in Mesoscopic Square Circuit with Tilted Magnetic Field at Edges[J]. Chin. Phys. Lett., 2007, 24(9): 107201
[13] A. John Peter. Non-Achievability of Metal--Insulator Transition in Two-Dimensional Systems[J]. Chin. Phys. Lett., 2006, 23(4): 107201
[14] XIE Ying-Mao, LIU Zheng-Dong,. Effect of Pump Area on Lasing Modes in Active Random Media[J]. Chin. Phys. Lett., 2005, 22(11): 107201
[15] LIU Chun-Xu, LIU Jun-Ye, ZHANG Jia-Hua, DOU Kai. Lasering in a Waveguide with Scatterers in Diameter 20nm[J]. Chin. Phys. Lett., 2004, 21(10): 107201
Viewed
Full text


Abstract