CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Cryogenic Digital Image Correlation as a Probe of Strain in Iron-Based Superconductors |
Ziye Mo, Chunyi Li, Wenting Zhang, Chang Liu, Yongxin Sun, Ruixian Liu, and Xingye Lu* |
Center for Advanced Quantum Studies, School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China |
|
Cite this article: |
Ziye Mo, Chunyi Li, Wenting Zhang et al 2024 Chin. Phys. Lett. 41 107102 |
|
|
Abstract Uniaxial strain is a powerful tuning parameter that can control symmetry and anisotropic electronic properties in iron-based superconductors. However, accurately characterizing anisotropic strain can be challenging and complex. Here, we utilize a cryogenic optical system equipped with a high-spatial-resolution microscope to characterize surface strains in iron-based superconductors using the digital image correlation method. Compared with other methods such as high-resolution x-ray diffraction, strain gauge, and capacitive sensor, digital image correlation offers a non-contact full-field measurement approach, acting as an optical virtual strain gauge that provides high spatial resolution. The results measured on detwinned BaFe$_2$As$_2$ are quantitatively consistent with the distortion measured by x-ray diffraction and neutron Larmor diffraction. These findings highlight the potential of cryogenic digital image correlation as an effective and accessible tool for probing the isotropic and anisotropic strains, facilitating applications of uniaxial strain tuning in research of quantum materials.
|
|
Received: 18 August 2024
Published: 18 October 2024
|
|
PACS: |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
74.25.-q
|
(Properties of superconductors)
|
|
|
|
|
[1] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 |
[2] | Dai P C 2015 Rev. Mod. Phys. 87 855 |
[3] | Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J, and Kotliar G 2022 Nature 601 35 |
[4] | Fernandes R M, Chubukov A V, and Schmalian J 2014 Nat. Phys. 10 97 |
[5] | Böhmer A E, Chu J H, Lederer S, and Yi M 2022 Nat. Phys. 18 1412 |
[6] | Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, and Fisher I R 2010 Science 329 824 |
[7] | Chu J H, Kuo H H, Analytis J G, and Fisher I R 2012 Science 337 710 |
[8] | Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, and Fisher I R 2016 Science 352 958 |
[9] | Nandi S, Kim M G, Kreyssig A, Fernandes R M, Pratt D K, Thaler A, Ni N, Bud'ko S L, Canfield P C, Schmalian J, McQueeney R J, and Goldman A I 2010 Phys. Rev. Lett. 104 057006 |
[10] | Lu X, Gretarsson H, Zhang R, Liu X, Luo H, Tian W, Laver M, Yamani Z, Kim Y J, Nevidomskyy A H, Si Q, and Dai P 2013 Phys. Rev. Lett. 110 257001 |
[11] | Coldea A I 2021 Front. Phys. 8 594500 |
[12] | Liu R X, Zhang W L, Wei Y, Tao Z, Asmara T C, Li Y, Strocov V N, Yu R, Si Q M, Schmitt T, and Lu X Y 2024 Phys. Rev. Lett. 132 016501 |
[13] | Hosoi S, Matsuura K, Ishida K et al. 2016 Proc. Natl. Acad. Sci. USA 113 8139 |
[14] | Worasaran T, Ikeda M S, Palmstrom J C, Straquadine J A W, Kivelson S A, and Fisher I R 2021 Science 372 973 |
[15] | Ikeda M S, Worasaran T, Palmstrom J C, Straquadine J A W, Walmsley P, and Fisher I R 2018 Phys. Rev. B 98 245133 |
[16] | Malinowski P, Jiang Q N, Sanchez J J, Mutch J, Liu Z Y, Went P, Liu J, Ryan P J, Kim J W, and Chu J H 2020 Nat. Phys. 16 1189 |
[17] | Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P, and Hicks C W 2021 Phys. Rev. X 11 021038 |
[18] | Zhao Z N, Hu D, Fu X, Zhou K J, Gu Y H, Tan G T, Lu X Y, and Dai P C 2023 arXiv:2305.04424 [cond-mat.supr-con] |
[19] | Fernandes R M and Millis A J 2013 Phys. Rev. Lett. 111 127001 |
[20] | Kang J, Chubukov A V, and Fernandes R M 2018 Phys. Rev. B 98 064508 |
[21] | Ghosh S, Ikeda M S, Chakraborty A R, Worasaran T, Theuss F, Peralta L B, Lozano P M, Kim J W, Ryan P J, Ye L, Kapitulnik A, Kivelson S A, Ramshaw B J, Fernandes R M, and Fisher I R 2024 arXiv:2402.17945 [cond-mat.supr-con] |
[22] | Sanchez J J, Malinowski P, Mutch J, Liu J, Kim J W, Ryan P J, and Chu J H 2021 Nat. Mater. 20 1519 |
[23] | Kim M G, Fernandes R M, Kreyssig A, Kim J W, Thaler A, Bud'ko S L, Canfield P C, McQueeney R J, Schmalian J, and Goldman A I 2011 Phys. Rev. B 83 134522 |
[24] | Lu X, Tseng K F, Keller T, Zhang W, Hu D, Song Y, Man H, Park J T, Luo H, Li S, Nevidomskyy A H, and Dai P 2016 Phys. Rev. B 93 134519 |
[25] | Qian T M, Christensen M H, Hu C W, Saha A, Andersen B M, Fernandes R M, Birol T, and Ni N 2021 Phys. Rev. B 104 144506 |
[26] | Blaber J, Adair B, and Antoniou A 2015 Exp. Mech. 55 1105 |
[27] | Jones E M C and Iadicola M A 2018 A Good Practices Guide for Digital Image Correlation (International Digital Image Correlation Society) |
[28] | Sunko V, Morales E A, Marković I, Barber M E, Milosavljević D, Mazzola F, Sokolov D A, Kikugawa N, Cacho C, Dudin P, Rosner H, Hicks C W, King P D C, and Mackenzie A P 2019 npj Quantum Mater. 4 46 |
[29] | Gallo-Frantz A, Jacques V L R, Sinchenko A A, Ghoneim D, Ortega L, Godard P, Renault P O, Hadj-Azzem A, Lorenzo J E, Monceau P, Thiaudière D, Grigoriev P D, Bellec E, and Le Bolloc'h D 2024 Nat. Commun. 15 3667 |
[30] | Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q M, and Dai P C 2014 Science 345 657 |
[31] | Lu X Y, Zhang W L, Tseng Y, Liu R X, Tao Z, Paris E, Liu P P, Chen T, Strocov V N, Song Y, Yu R, Si Q M, Dai P C, and Schmitt T 2022 Nat. Phys. 18 806 |
[32] | Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, and Prozorov R 2016 Phys. Rev. Lett. 117 127001 |
[33] | Yang X R, Tang Q, Zhou Q Y, Wang H P, Li Y, Fu X, Zhang J W, Song Y, Yuan H Q, Dai P C, and Lu X Y 2023 Chin. Phys. B 32 127101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|