CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fermi Rubik's Cube in High-Pressure Induced Chlorine-Rich Compounds |
Jun Kong1,2, Lei Su2,3, Haixu Cui4, Hairui Ding1, Jingyu Hou1, Chunxia Chi1, Shiyang Liu1, Xiang-Feng Zhou5, Hui-Tian Wang6, and Xiao Dong1* |
1Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China 2Center for High Pressure Science and Technology Advanced Research, Beijing 100093, China 3Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China 4College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China 5Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao 066004, China 6National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Jun Kong, Lei Su, Haixu Cui et al 2024 Chin. Phys. Lett. 41 107101 |
|
|
Abstract In the quasi-free electron model, the Fermi surface spreads into a sphere in the Brillouin zone, i.e., the Fermi sphere. The Fermi sphere exists widely in metal systems, no matter whether the crystal is in a body-center cubic, face-center cubic, or hexagonal close-packed lattice. Here, we report a class of compounds stabilized at high pressure with Rubik's cubic Fermi surface, in which the representative example is $Pm\bar{3}n$-CaCl$_{3}$. Our quantum-mechanical variable-composition evolutionary simulations predict the thermal stabilities of CaCl$_{3}$, and the tight-binding model reveals that its unique Fermi surface originates from the quasi-one-dimensional interaction, structural symmetric protection, and particle-hole symmetry breaking. Furthermore, by its flat and steep band structure, CaCl$_{3}$ has a huge span of effective mass from $9.08\times 10^{3} m_{\rm e}$ (super-heavy) to $5.13\times 10^{-4} m_{\rm e}$ on the Fermi level, which supplies an interesting platform for quasiparticle research.
|
|
Received: 11 August 2024
Published: 18 October 2024
|
|
PACS: |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
|
|
|
[1] | Parkin S S P, Farrow R F C, Marks R F, Cebollada A, Harp G R, and Savoy R J 1994 Phys. Rev. Lett. 72 3718 |
[2] | Hughes R J, Dugdale S B, Major Z, Alam M A, Jarlborg T, Bruno E, and Ginatempo B 2004 Phys. Rev. B 69 174406 |
[3] | McDonald R D, Singleton J, Goddard P A, Drymiotis F, Harrison N, Harima H, Suzuki M T, Saxena A, Darling T, Migliori A, Smith J L, and Lashley J C 2005 J. Phys.: Condens. Matter 17 L69 |
[4] | Dugdale S B, Watts R J, Laverock J, Major Z, Alam M A, Samsel-Czekała M, Kontrym-Sznajd G, Sakurai Y, Itou M, and Fort D 2006 Phys. Rev. Lett. 96 046406 |
[5] | Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, and Takagi H 2001 Science 294 2518 |
[6] | Sandeman K G, Lonzarich G G, and Schofield A J 2003 Phys. Rev. Lett. 90 167005 |
[7] | Sugawara K, Sato T, and Takahashi T 2009 Nat. Phys. 5 40 |
[8] | Alexandradinata A and Glazman L 2023 Annu. Rev. Condens. Matter Phys. 14 261 |
[9] | Kaganov M I and Lifshits I M 1979 Sov. Phys. Usp. 22 904 |
[10] | Guo C, Alexandradinata A, Putzke C, Estry A, Tu T, Kumar N, Fan F R, Zhang S, Wu Q, Yazyev O V, Shirer K R, Bachmann M D, Peng H, Bauer E D, Ronning F, Sun Y, Shekhar C, Felser C, and Moll P J W 2021 Nat. Commun. 12 6213 |
[11] | Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B, and Konôpková Z 2013 Science 342 1502 |
[12] | Li Y L, Wang S N, Oganov A R, Gou H, Smith J S, and Strobel T A 2015 Nat. Commun. 6 6974 |
[13] | Li D, Tian F, Lv Y, Wei S, Duan D, Liu B, and Cui T 2017 J. Phys. Chem. C 121 1515 |
[14] | Yang L, Zhang Y, Chen Y, Zhong X, Wang D, Lang J, Qu X, and Yang J 2021 Materials 14 7650 |
[15] | Zhang W, Oganov A R, Zhu Q, Lobanov S S, Stavrou E, and Goncharov A F 2016 Sci. Rep. 6 26265 |
[16] | Zhang L, Shi G, Peng B, Gao P, Chen L, Zhong N, Mu L, Zhang L, Zhang P, Gou L, Zhao Y, Liang S, Jiang J, Zhang Z, Ren H, Lei X, Yi R, Qiu Y, Zhang Y, Liu X, Wu M, Yan L, Duan C, Zhang S, and Fang H 2021 Natl. Sci. Rev. 8 nwaa274 |
[17] | Liu C, Wang J, Deng X, Wang X, Pickard C J, Helled R, Wu Z, Wang H T, Xing D, and Sun J 2022 Chin. Phys. Lett. 39 076101 |
[18] | Xie F, Lu T, Yu Z, Wang Y, Wang Z, Meng S, and Liu M 2023 Chin. Phys. Lett. 40 057401 |
[19] | Liu Y X, Wang C, Han S, Chen X, Sun H R, and Liu X B 2021 Chin. Phys. Lett. 38 036201 |
[20] | Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 |
[21] | Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354 |
[22] | Lyakhov A O, Oganov A R, Stokes H T, and Zhu Q 2013 Comput. Phys. Commun. 184 1172 |
[23] | Bushlanov P V, Blatov V A, and Oganov A R 2019 Comput. Phys. Commun. 236 1 |
[24] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[25] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[26] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[27] | Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 |
[28] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[29] | Peierls R 1991 More Surprises in Theoretical Physics (Princeton: Princeton University Press) |
[30] | Regnault N, Xu Y, Li M R, Ma D S, Jovanovic M, Yazdani A, Parkin S S P, Felser C, Schoop L M, Ong N P, Cava R J, Elcoro L, Song Z D, and Bernevig B A 2022 Nature 603 824 |
[31] | Simon A 1997 Angew. Chem. Int. Ed. 36 1788 |
[32] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 |
[33] | Degiorgi L 1999 Rev. Mod. Phys. 71 687 |
[34] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 |
[35] | Park J M, Cao Y, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Nature 590 249 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|