CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Theoretical Models on Interfacial Thermal Conductance of Nanoscale Solid Interfaces in Chips: A Mini Review |
Zhicheng Zong1, Xiandong Chen2,3*, Bin Yan2,3, Yelei Xie2,3, Jian Pang2,3, Guangyao Li2,3, Jiqiang Hu1, Zhipeng Wu1, Bo Li1, Haisheng Fang1, and Nuo Yang1* |
1School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2Department of Packaging and Testing Institution, Sanechips Technology Co., Ltd., Shenzhen 518055, China 3State Key Laboratory of Mobile Network and Mobile Multimedia Technology, ZTE Corporation, Shenzhen 518055, China
|
|
Cite this article: |
Zhicheng Zong, Xiandong Chen, Bin Yan et al 2024 Chin. Phys. Lett. 41 106301 |
|
|
Abstract With the rapid increase in power density of electronic devices, thermal management has become urgent for the electronics industry. Controlling temperature in the back-end-of-line is crucial for maintaining the reliability of integrated circuits, where many atomic-scale interfaces exist. The theoretical models of interface thermal conductance not only accurately predict the values but also help to analyze the underlying mechanism. This review picks up and introduces some representative theoretical models considering interfacial roughness, elastic and inelastic processes, and electron–phonon couplings, etc. Moreover, the limitations and problems of these models are also discussed.
|
|
Received: 01 April 2024
Review
Published: 26 September 2024
|
|
PACS: |
63.20.K-
|
(Phonon interactions)
|
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
44.10.+i
|
(Heat conduction)
|
|
46.25.Cc
|
(Theoretical studies)
|
|
|
|
|
[1] | Chen J, Xu X F, Zhou J, and Li B W 2022 Rev. Mod. Phys. 94 025002 |
[2] | Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605 |
[3] | Giri A and Hopkins P E 2020 Adv. Funct. Mater. 30 1903857 |
[4] | Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, and Shi L 2014 Appl. Phys. Rev. 1 011305 |
[5] | Monachon C, Weber L, and Dames C 2016 Annu. Rev. Mater. Res. 46 433 |
[6] | Luo T L, Ding Y F, Wei B J, Du J Y, Shen X Y, Zhu G M, and Li B W 2023 Acta Phys. Sin. 72 234401 (in Chinese) |
[7] | Wu M, Shi R, Qi R, Li Y, Feng T, Liu B, Yan J, Li X, Liu Z, Wang T, Wei T, Liu Z, Du J, Chen J, and Gao P 2023 Chin. Phys. Lett. 40 036801 |
[8] | Li M, Shakoori M A, Wang R, and Li H 2024 Chin. Phys. Lett. 41 016302 |
[9] | Restrepo O D, Singh D, Rabie M, Paliwoda P, and Silva E C 2022 IEEE Trans. Electron Devices 69 2579 |
[10] | Chung C C, Lin H H, Wan W K, Yang M T, and Liu C W 2019 IEEE Trans. Electron Devices 66 2710 |
[11] | Chang X, Oprins H, Lofrano M, Vermeersch B, Ciofi I, Pedreira O V, Tokei Z, and De Wolf I 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm) 31 May 2022–3 June 2022, San Diego, CA, USA, pp 1–8 |
[12] | Zong Z, Deng S, Qin Y, Wan X, Zhan J, Ma D, and Yang N 2023 Nanoscale 15 16472 |
[13] | Hu S, Zhao C Y, and Gu X 2022 Chin. Phys. B 31 056301 |
[14] | Yang L, Yang B, and Li B 2023 Phys. Rev. B 108 165303 |
[15] | Yang L, Wan X, Ma D, Jiang Y, and Yang N 2021 Phys. Rev. B 103 155305 |
[16] | Yang N, Luo T, Esfarjani K, Henry A, Tian Z, Shiomi J, Chalopin Y, Li B, and Chen G 2015 J. Comput. Theor. Nanosci. 12 168 |
[17] | Deng S, Xiao C, Yuan J, Ma D, Li J, Yang N, and He H 2019 Appl. Phys. Lett. 115 101603 |
[18] | Wilson R B, Apgar B A, Hsieh W P, Martin L W, and Cahill D G 2015 Phys. Rev. B 91 115414 |
[19] | Zheng K, Zhu J, Ma Y M, Tang D W, and Wang F S 2014 Chin. Phys. B 23 107307 |
[20] | Braun J L, Rost C M, Lim M, Giri A, Olson D H, Kotsonis G N, Stan G, Brenner D W, Maria J P, and Hopkins P E 2018 Adv. Mater. 30 1805004 |
[21] | Qi R, Shi R, Li Y, Sun Y, Wu M, Li N, Du J, Liu K, Chen C, Chen J, Wang F, Yu D, Wang E G, and Gao P 2021 Nature 599 399 |
[22] | Li Y H, Qi R S, Shi R C, Hu J N, Liu Z T, Sun Y W, Li M Q, Li N, Song C L, Wang L, Hao Z B, Luo Y, Xue Q K, Ma X C, and Gao P 2022 Proc. Natl. Acad. Sci. USA 119 e2117027119 |
[23] | Bernasconi R and Magagnin L 2019 J. Electrochem. Soc. 166 D3219 |
[24] | Zhang Y, Ma D, Zang Y, Wang X, and Yang N 2018 Front. Energy Res. 6 48 |
[25] | Koh Y K, Cao Y, Cahill D G, and Jena D 2009 Adv. Funct. Mater. 19 610 |
[26] | Hua C, Chen X, Ravichandran N K, and Minnich A J 2017 Phys. Rev. B 95 205423 |
[27] | Cheng Z 2021 Acta Phys. Sin. 70 236502 (in Chinese) |
[28] | Ziman J M 1960 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford University Press) |
[29] | Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, and Yang N 2023 Acta Phys. Sin. 72 034401 (in Chinese) |
[30] | Hopkins P E, Duda J C, Petz C W, and Floro J A 2011 Phys. Rev. B 84 035438 |
[31] | Zhou H and Zhang G 2018 Chin. Phys. B 27 034401 |
[32] | Sääskilahti K, Oksanen J, Tulkki J, and Volz S 2014 Phys. Rev. B 90 134312 |
[33] | Feng T, Zhong Y, Shi J, and Ruan X 2019 Phys. Rev. B 99 045301 |
[34] | Li Q, Liu F, Hu S, Song H, Yang S, Jiang H, Wang T, Koh Y K, Zhao C, Kang F, Wu J, Gu X, Sun B, and Wang X 2022 Nat. Commun. 13 4901 |
[35] | Landry E S and McGaughey A J H 2009 Phys. Rev. B 80 165304 |
[36] | Liu Y G, Li H X, Qiu Y J, Li X, and Huang C P 2023 Phys. Chem. Chem. Phys. 25 29080 |
[37] | Dames C and Chen G 2004 J. Appl. Phys. 95 682 |
[38] | Hopkins P E 2009 J. Appl. Phys. 106 013528 |
[39] | Hopkins P E, Duda J C, and Norris P M 2011 J. Heat Transfer 133 062401 |
[40] | Hopkins P E and Norris P M 2007 Nanoscale Microscale Thermophys. Eng. 11 247 |
[41] | Prasher R S and Phelan P E 2001 J. Heat Transfer 123 105 |
[42] | Lyeo H K and Cahill D G 2006 Phys. Rev. B 73 144301 |
[43] | Singh P, Seong M, and Sinha S 2013 Appl. Phys. Lett. 102 181906 |
[44] | Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, and Hopkins P E 2015 J. Appl. Phys. 117 105105 |
[45] | Sadasivam S, Waghmare U V, and Fisher T S 2015 J. Appl. Phys. 117 134502 |
[46] | Gundrum B C, Cahill D G, and Averback R S 2005 Phys. Rev. B 72 245426 |
[47] | Hopkins P E, Beechem T E, Duda J C, Smoyer J L, and Norris P M 2010 Appl. Phys. Lett. 96 011907 |
[48] | Sanders D J and Walton D 1977 Phys. Rev. B 15 1489 |
[49] | Majumdar A and Reddy P 2004 Appl. Phys. Lett. 84 4768 |
[50] | Wang Y, Lu Z, Roy A K, and Ruan X 2016 J. Appl. Phys. 119 065103 |
[51] | Liao B, Zhou J, and Chen G 2014 Phys. Rev. Lett. 113 025902 |
[52] | Deng C, Huang Y, An M, and Yang N 2021 Mater. Today Phys. 16 100305 |
[53] | Wan X, Pan D, Zong Z, Qin Y, Lü J T, Volz S, Zhang L, and Yang N 2024 Nano Lett. 24 6889 |
[54] | Blank M, Schneider G, Ordonez-Miranda J, and Weber L 2019 J. Appl. Phys. 126 165302 |
[55] | Li M, Wang Y, Zhou J, Ren J, and Li B 2015 Eur. Phys. J. B 88 149 |
[56] | Huberman M L and Overhauser A W 1994 Phys. Rev. B 50 2865 |
[57] | Sergeev A V 1998 Phys. Rev. B 58 R10199 |
[58] | Mahan G D 2009 Phys. Rev. B 79 075408 |
[59] | Giri A, Gaskins J T, Foley B M, Cheaito R, and Hopkins P E 2015 J. Appl. Phys. 117 044305 |
[60] | Wang W and Cahill D G 2012 Phys. Rev. Lett. 109 175503 |
[61] | Wu X and Han Q 2022 Int. J. Heat Mass Transfer 184 122390 |
[62] | Jones R E, Duda J C, Zhou X W, Kimmer C J, and Hopkins P E 2013 Appl. Phys. Lett. 102 183119 |
[63] | Liang Z, Sasikumar K, and Keblinski P 2014 Phys. Rev. Lett. 113 065901 |
[64] | Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T, and Zhang G 2020 Adv. Funct. Mater. 30 1903829 |
[65] | Beechem T, Graham S, Hopkins P, and Norris P 2007 Appl. Phys. Lett. 90 054104 |
[66] | Beechem T and Hopkins P E 2009 J. Appl. Phys. 106 124301 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|