Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 107101    DOI: 10.1088/0256-307X/41/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fermi Rubik's Cube in High-Pressure Induced Chlorine-Rich Compounds
Jun Kong1,2, Lei Su2,3, Haixu Cui4, Hairui Ding1, Jingyu Hou1, Chunxia Chi1, Shiyang Liu1, Xiang-Feng Zhou5, Hui-Tian Wang6, and Xiao Dong1*
1Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
2Center for High Pressure Science and Technology Advanced Research, Beijing 100093, China
3Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
4College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
5Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao 066004, China
6National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Jun Kong, Lei Su, Haixu Cui et al  2024 Chin. Phys. Lett. 41 107101
Download: PDF(3267KB)   PDF(mobile)(3321KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the quasi-free electron model, the Fermi surface spreads into a sphere in the Brillouin zone, i.e., the Fermi sphere. The Fermi sphere exists widely in metal systems, no matter whether the crystal is in a body-center cubic, face-center cubic, or hexagonal close-packed lattice. Here, we report a class of compounds stabilized at high pressure with Rubik's cubic Fermi surface, in which the representative example is $Pm\bar{3}n$-CaCl$_{3}$. Our quantum-mechanical variable-composition evolutionary simulations predict the thermal stabilities of CaCl$_{3}$, and the tight-binding model reveals that its unique Fermi surface originates from the quasi-one-dimensional interaction, structural symmetric protection, and particle-hole symmetry breaking. Furthermore, by its flat and steep band structure, CaCl$_{3}$ has a huge span of effective mass from $9.08\times 10^{3} m_{\rm e}$ (super-heavy) to $5.13\times 10^{-4} m_{\rm e}$ on the Fermi level, which supplies an interesting platform for quasiparticle research.
Received: 11 August 2024      Published: 18 October 2024
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  62.50.-p (High-pressure effects in solids and liquids)  
  73.20.At (Surface states, band structure, electron density of states)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/107101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/107101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Kong
Lei Su
Haixu Cui
Hairui Ding
Jingyu Hou
Chunxia Chi
Shiyang Liu
Xiang-Feng Zhou
Hui-Tian Wang
and Xiao Dong
[1] Parkin S S P, Farrow R F C, Marks R F, Cebollada A, Harp G R, and Savoy R J 1994 Phys. Rev. Lett. 72 3718
[2] Hughes R J, Dugdale S B, Major Z, Alam M A, Jarlborg T, Bruno E, and Ginatempo B 2004 Phys. Rev. B 69 174406
[3] McDonald R D, Singleton J, Goddard P A, Drymiotis F, Harrison N, Harima H, Suzuki M T, Saxena A, Darling T, Migliori A, Smith J L, and Lashley J C 2005 J. Phys.: Condens. Matter 17 L69
[4] Dugdale S B, Watts R J, Laverock J, Major Z, Alam M A, Samsel-Czekała M, Kontrym-Sznajd G, Sakurai Y, Itou M, and Fort D 2006 Phys. Rev. Lett. 96 046406
[5] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, and Takagi H 2001 Science 294 2518
[6] Sandeman K G, Lonzarich G G, and Schofield A J 2003 Phys. Rev. Lett. 90 167005
[7] Sugawara K, Sato T, and Takahashi T 2009 Nat. Phys. 5 40
[8] Alexandradinata A and Glazman L 2023 Annu. Rev. Condens. Matter Phys. 14 261
[9] Kaganov M I and Lifshits I M 1979 Sov. Phys. Usp. 22 904
[10] Guo C, Alexandradinata A, Putzke C, Estry A, Tu T, Kumar N, Fan F R, Zhang S, Wu Q, Yazyev O V, Shirer K R, Bachmann M D, Peng H, Bauer E D, Ronning F, Sun Y, Shekhar C, Felser C, and Moll P J W 2021 Nat. Commun. 12 6213
[11] Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B, and Konôpková Z 2013 Science 342 1502
[12] Li Y L, Wang S N, Oganov A R, Gou H, Smith J S, and Strobel T A 2015 Nat. Commun. 6 6974
[13] Li D, Tian F, Lv Y, Wei S, Duan D, Liu B, and Cui T 2017 J. Phys. Chem. C 121 1515
[14] Yang L, Zhang Y, Chen Y, Zhong X, Wang D, Lang J, Qu X, and Yang J 2021 Materials 14 7650
[15] Zhang W, Oganov A R, Zhu Q, Lobanov S S, Stavrou E, and Goncharov A F 2016 Sci. Rep. 6 26265
[16] Zhang L, Shi G, Peng B, Gao P, Chen L, Zhong N, Mu L, Zhang L, Zhang P, Gou L, Zhao Y, Liang S, Jiang J, Zhang Z, Ren H, Lei X, Yi R, Qiu Y, Zhang Y, Liu X, Wu M, Yan L, Duan C, Zhang S, and Fang H 2021 Natl. Sci. Rev. 8 nwaa274
[17] Liu C, Wang J, Deng X, Wang X, Pickard C J, Helled R, Wu Z, Wang H T, Xing D, and Sun J 2022 Chin. Phys. Lett. 39 076101
[18] Xie F, Lu T, Yu Z, Wang Y, Wang Z, Meng S, and Liu M 2023 Chin. Phys. Lett. 40 057401
[19] Liu Y X, Wang C, Han S, Chen X, Sun H R, and Liu X B 2021 Chin. Phys. Lett. 38 036201
[20] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[21] Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354
[22] Lyakhov A O, Oganov A R, Stokes H T, and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[23] Bushlanov P V, Blatov V A, and Oganov A R 2019 Comput. Phys. Commun. 236 1
[24] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[25] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Blöchl P E 1994 Phys. Rev. B 50 17953
[27] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[28] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[29]Peierls R 1991 More Surprises in Theoretical Physics (Princeton: Princeton University Press)
[30] Regnault N, Xu Y, Li M R, Ma D S, Jovanovic M, Yazdani A, Parkin S S P, Felser C, Schoop L M, Ong N P, Cava R J, Elcoro L, Song Z D, and Bernevig B A 2022 Nature 603 824
[31] Simon A 1997 Angew. Chem. Int. Ed. 36 1788
[32] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[33] Degiorgi L 1999 Rev. Mod. Phys. 71 687
[34] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[35] Park J M, Cao Y, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Nature 590 249
Related articles from Frontiers Journals
[1] Yufeng Sun, Xin-Gao Gong, and Ji-Hui Yang. First-Principles Studies of Structural Evolutions in Cathode Materials LiMO$_{2}$ (M = Co, Mn, Ni)[J]. Chin. Phys. Lett., 2024, 41(10): 107101
[2] Ran Liu, Shuang Liu, Ying Zhang, Peng Wang, and Zhen Yao. Systematical High-Pressure Study of Praseodymium Nitrides in N-Rich Region[J]. Chin. Phys. Lett., 2024, 41(6): 107101
[3] Yafeng Deng, Yilin Zhang, Yafei Zhao, Yongkang Xu, Xingze Dai, Shuanghai Wang, Xianyang Lu, Yao Li, Yongbing Xu, and Liang He. Anisotropic Band Evolution of Bulk Black Phosphorus Induced by Uniaxial Tensile Strain[J]. Chin. Phys. Lett., 2024, 41(3): 107101
[4] Danwen Yuan, Changming Yue, Yuefang Hu, and Wei Zhang. Nontrivial Topological Phases in Ternary Borides M$_{2}$XB$_{2}$ (M = W, Mo; X = Co, Ni)[J]. Chin. Phys. Lett., 2024, 41(3): 107101
[5] J. M. Wang, H. J. Qian, Q. Jiang, S. Qiao, and M. Ye. Magnetic Topological Dirac Semimetal Transition Driven by SOC in EuMg$_2$Bi$_2$[J]. Chin. Phys. Lett., 2024, 41(1): 107101
[6] Sheng Zhang, Haohao Sheng, Zhi-Da Song, Chenhao Liang, Yi Jiang, Song Sun, Quansheng Wu, Hongming Weng, Zhong Fang, Xi Dai, and Zhijun Wang. VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations[J]. Chin. Phys. Lett., 2023, 40(12): 107101
[7] Guanghui Cai, Yutao Jiang, Hui Zhou, Ze Yu, Kun Jiang, Youguo Shi, Sheng Meng, and Miao Liu. Energy Landscape and Phase Competition of CsV$_{3}$Sb$_{5}$, CsV$_{6}$Sb$_{6}$ and TbMn$_{6}$Sn$_{6}$-Type Kagome Materials[J]. Chin. Phys. Lett., 2023, 40(11): 107101
[8] Yao Wang, Zhenzhen Lei, Jinsen Zhang, Xinyong Tao, Chenqiang Hua, and Yunhao Lu. Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium[J]. Chin. Phys. Lett., 2023, 40(11): 107101
[9] Bin Li, Yeqian Yang, Yuxiang Fan, Cong Zhu, Shengli Liu, and Zhixiang Shi. Theoretical Predictions on Superconducting Phase above Room Temperature in Lutetium-Beryllium Hydrides at High Pressures[J]. Chin. Phys. Lett., 2023, 40(9): 107101
[10] Jing-Yang You, Xue-Juan Dong, Bo Gu, and Gang Su. Possible Room-Temperature Ferromagnetic Semiconductors[J]. Chin. Phys. Lett., 2023, 40(6): 107101
[11] Jierui Huang, Tan Zhang, Sheng Xu, Zhicheng Rao, Jiajun Li, Junde Liu, Shunye Gao, Yaobo Huang, Wenliang Zhu, Tianlong Xia, Hongming Weng, and Tian Qian. Electronic Structure of the Weak Topological Insulator Candidate Zintl Ba$_{3}$Cd$_{2}$Sb$_{4}$[J]. Chin. Phys. Lett., 2023, 40(4): 107101
[12] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 107101
[13] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 107101
[14] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 107101
[15] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 107101
Viewed
Full text


Abstract