THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Dispersive Analysis of Excited Glueball States |
Hsiang-nan Li* |
Institute of Physics, Academia Sinica, Taipei 115 |
|
Cite this article: |
Hsiang-nan Li 2024 Chin. Phys. Lett. 41 101101 |
|
|
Abstract Motivated by the determination for the spin-parity quantum numbers of the $X(2370)$ meson at BESIII, we extend our dispersive analysis on hadronic ground states to excited states. The idea is to start with the dispersion relation which a correlation function obeys, and subtract the known ground-state contribution from the involved spectral density. Solving the resultant dispersion relation as an inverse problem with available operator-product-expansion inputs, we extract excited-state masses from the subtracted spectral density. This formalism is verified by means of the application to the series of $\rho$ resonances, which establishes the $\rho(770)$, $\rho(1450)$ and $\rho(1700)$ mesons one by one under the sequential subtraction procedure. Our previous study has suggested the admixture of the $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$ mesons (the $\eta(1760)$ meson) to be the lightest scalar (pseudoscalar) glueball. The present work predicts that the $f_0(2200)$ ($X(2370)$) meson is the first excited scalar (pseudoscalar) glueball.
|
|
Received: 15 August 2024
Editors' Suggestion
Published: 26 October 2024
|
|
|
|
|
|
[1] | Ablikim M et al. [BESIII] 2024 Phys. Rev. Lett. 132 181901 |
[2] | Bali G S, Schilling K, Hulsebos A, Irving A C, Michael C, and Stephenson P W 1993 Phys. Lett. B 309 378 |
[3] | Morningstar C J and Peardon M 1999 Phys. Rev. D 60 034509 |
[4] | Chen Y, Alexandru A, Dong S J, Draper T, Horvath I, Lee F X, Liu K F, Mathur N, Morningstar C, Peardon M et al. 2006 Phys. Rev. D 73 014516 |
[5] | Athenodorou A and Teper M 2020 J. High Energy Phys. 2020(11) 172 |
[6] | Gui L C, Dong J M, Chen Y, and Yang Y B 2019 Phys. Rev. D 100 054511 |
[7] | Liu K F 2008 AIP Conf. Proc. 1030 305 |
[8] | Cheng H Y, Li H N, and Liu K F 2009 Phys. Rev. D 79 014024 |
[9] | Shifman M A, Vainshtein A I, and Zakharov V I 1979 Nucl. Phys. B 147 385; 1979 Nucl. Phys. B 147 448 |
[10] | Corianò C and Li H N 1994 Phys. Lett. B 324 98 |
[11] | Corianò C, Li H N, and Savkli C 1998 J. High Energy Phys. 1998(07) 008 |
[12] | Leinweber D B 1997 Ann. Phys. 254 328 |
[13] | Huang T, Jin H Y, and Zhang A L 1999 Phys. Rev. D 59 034026 |
[14] | Harnett D and Steele T G 2001 Nucl. Phys. A 695 205 |
[15] | Gubler P and Oka M 2010 Prog. Theor. Phys. 124 995 |
[16] | Li H N and Umeeda H 2020 Phys. Rev. D 102 114014 |
[17] | Li H N 2021 Phys. Rev. D 104 114017 |
[18] | Zhao Z X, Xing Y P, and Li R H 2024 arXiv:2407.09819 [hep-ph] |
[19] | Li H N 2022 Phys. Rev. D 106 034015 |
[20] | Li H N, Umeeda H, Xu F, and Yu F S 2020 Phys. Lett. B 810 135802 |
[21] | Xiong A S, Wei T, and Yu F S 2022 arXiv:2211.13753 [hep-th] |
[22] | Li H N and Umeeda H 2020 Phys. Rev. D 102 094003 |
[23] | Navas S et al. 2024 Phys. Rev. D 110 030001 |
[24] | She Z L, Lei A K, Zhang W C, Yan Y L, Zhou D M, Zheng H, and Sa B H 2024 arXiv:2407.07661 [hep-ph] |
[25] | Cao J, She Z L, Zhang J P et al. 2024 arXiv:2408.04130 [hep-ph] |
[26] | Eshraim W I 2019 Phys. Rev. D 100 096007 |
[27] | Eshraim W I 2023 Eur. Phys. J. C 83 262 |
[28] | Chung Y, Dosch H G, Kremer M, and Schall D 1984 Z. Phys. C 25 151 |
[29] | Narison S 1995 Phys. Lett. B 361 121 |
[30] | Narison S 2009 Phys. Lett. B 673 30 |
[31] | Kwon Y, Procura M, and Weise W 2008 Phys. Rev. C 78 055203 |
[32] | Groetsch C W 2007 J. Phys.: Conf. Ser. 73 012001 |
[33] | Wang Q N, Zhang Z F, Steele T G, Jin H Y, and Huang Z R 2017 Chin. Phys. C 41 074107 |
[34] | Narison S 2015 Nucl. Part. Phys. Proc. 258–259 189 |
[35] | Narison S 1998 Nucl. Phys. B 509 312 |
[36] | Forkel H 2005 Phys. Rev. D 71 054008 |
[37] | Chetyrkin K G, Gorishny S G, and Spiridonov V P 1985 Phys. Lett. B 160 149; Surguladze L R and Tkachov F V 1990 Nucl. Phys. B 331 35 |
[38] | Mathieu V, Kochelev N, and Vento V 2009 Int. J. Mod. Phys. E 18 1 |
[39] | Novikov V A, Shifman M A, Vainshtein A I, and Zakharov V I 1981 Nucl. Phys. B 191 301; Shifman M A 1991 Phys. Rep. 209 341 |
[40] | Forkel H 2001 Phys. Rev. D 64 034015 |
[41] | Wen S, Zhang Z, and Liu J 2011 J. Phys. G 38 015005 |
[42] | Wen S, Zhang Z, and Liu J 2010 Phys. Rev. D 82 016003 |
[43] | Wang F, Chen J, and Liu J 2015 Eur. Phys. J. C 75 460 |
[44] | Yuan X H and Tang L 2010 Commun. Theor. Phys. 54 495 |
[45] | Novikov V A, Shifman M A, Vainshtein A I, and Zakharov V I 1979 Phys. Lett. B 86 347; 1980 Nucl. Phys. B 165 55 |
[46] | Kataev A L, Krasnikov N V, and Pivovarov A A 1982 Nucl. Phys. B 198 508 [erratum: 1997 Nucl. Phys. B 490 505] |
[47] | Bagan E and Steele T G 1990 Phys. Lett. B 243 413 |
[48] | Chetyrkin K G, Kniehl B A, and Steinhauser M 1997 Phys. Rev. Lett. 79 2184 |
[49] | Harnett D and Steele T G 2004 J. High Energy Phys. 2004(12) 037 |
[50] | Zhang A L and Steele T G 2003 Nucl. Phys. A 728 165 |
[51] | Asner D, Mann R B, Murison J L, and Steele T G 1992 Phys. Lett. B 296 171 |
[52] | Shifman M A, Vainshtein A I, and Zakharov V I 1980 Nucl. Phys. B 166 493; Leutwyler H and Smilga A 1992 Phys. Rev. D 46 5607; for two degenerate avors also see Crewther R J 1977 Phys. Lett. B 70 349 |
[53] | Novikov V A and Shifman M A 1981 Z. Phys. C 8 43 |
[54] | Shifman M A 1981 Z. Phys. C 9 347 |
[55] | Bagán E, Latorre J I, Pascual P, and Tarrach R 1985 Nucl. Phys. B 254 555 |
[56] | Panagopoulos H and Vicari E 1990 Nucl. Phys. B 332 261; DiGiacomo A, Fabricius K, and Paffuti G 1982 Phys. Lett. B 118 129 |
[57] | Leutwyler H and Smilga A 1992 Phys. Rev. D 46 5607 |
[58] | Novikov V A, Shifman M A, Vainshtein A I, and Zakharov V I 1980 Nucl. Phys. B 165 67 |
[59] | Reinders L J, Rubenstein H, and Yazaki S 1985 Phys. Rep. 127 1 |
[60] | Narison S 2010 Phys. Lett. B 693 559; Erratum: 2011 Phys. Lett. B 705 544; 2012 Phys. Lett. B 706 412; 2012 Phys. Lett. B 707 259 |
[61] | Narison S and Veneziano G 1989 Int. J. Mod. Phys. A 4 2751 |
[62] | Amsler C and Close F E 1995 Phys. Lett. B 353 385; Close F E and Kirk A 2000 Phys. Lett. B 483 345; Close F E and Zhao Q 2005 Phys. Rev. D 71 094022 |
[63] | Giacosa F, Gutsche T, Lyubovitskij V E, and Faessler A 2005 Phys. Rev. D 72 094006 |
[64] | Vento V 2006 Phys. Rev. D 73 054006 |
[65] | Fariborz A H 2006 Phys. Rev. D 74 054030 |
[66] | Fariborz A H 2004 Int. J. Mod. Phys. A 19 2095 |
[67] | Cheng H Y, Chua C K, and Liu K F 2015 Phys. Rev. D 92 094006 |
[68] | Noshad H, Mohammad Zebarjad S, and Zarepour S 2018 Nucl. Phys. B 934 408 |
[69] | Guo X D, Ke H W, Zhao M G, Tang L, and Li X Q 2021 Chin. Phys. C 45 023104 |
[70] | Narison S 2022 Nucl. Phys. A 1017 122337 |
[71] | Chen H X, Chen W, and Zhu S L 2021 Phys. Rev. D 104 094050 |
[72] | Zhang L, Chen C, Chen Y, and Huang M 2022 Phys. Rev. D 105 026020 |
[73] | Sonnenschein J and Weissman D 2019 Eur. Phys. J. C 79 326 |
[74] | Kataev A L, Krasnikov N V, and Pivovarov A A 1981 Phys. Lett. B 107 115 |
[75] | Sun W, Gui L C, Chen Y, Gong M, Liu C, Liu Y B, Liu Z, Ma J P, and Zhang J B 2018 Chin. Phys. C 42 093103 |
[76] | Faddeev L, Niemi A J, and Wiedner U 2004 Phys. Rev. D 70 114033 |
[77] | Huber M Q, Fischer C S, and Sanchis-Alepuz H 2020 Eur. Phys. J. C 80 1077 |
[78] | Kaptari L P and Kämpfer B 2020 Few-Body Syst. 61 28 |
[79] | Masoni A, Cicalò C, and Usai G L 2006 J. Phys. G 32 R293 |
[80] | He S, Huang M, and Yan Q S 2010 Phys. Rev. D 81 014003 |
[81] | Tsai Y D, Li H N, and Zhao Q 2012 Phys. Rev. D 85 034002 |
[82] | Qin W, Zhao Q, and Zhong X H 2018 Phys. Rev. D 97 096002 |
[83] | Li X Q and Page P R 1998 Eur. Phys. J. C 1 579 |
[84] | Wu N, Ruan T N, and Zheng Z P 2001 Chin. Phys. 10 611 |
[85] | Ablikim M et al. [BES] 2006 Phys. Rev. D 73 112007 |
[86] | Coffman D et al. 1990 Phys. Rev. D 41 1410; Augustin J E et al. (DM2 Collaboration) 1990 Phys. Rev. D 42 10; Bai J Z et al. (BES Collaboration) 2004 Phys. Lett. B 594 47 |
[87] | Ablikim M et al. [BESIII] 2018 Phys. Rev. D 97 051101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|