Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 101101    DOI: 10.1088/0256-307X/41/10/101101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Dispersive Analysis of Excited Glueball States
Hsiang-nan Li*
Institute of Physics, Academia Sinica, Taipei 115
Cite this article:   
Hsiang-nan Li 2024 Chin. Phys. Lett. 41 101101
Download: PDF(736KB)   PDF(mobile)(812KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Motivated by the determination for the spin-parity quantum numbers of the $X(2370)$ meson at BESIII, we extend our dispersive analysis on hadronic ground states to excited states. The idea is to start with the dispersion relation which a correlation function obeys, and subtract the known ground-state contribution from the involved spectral density. Solving the resultant dispersion relation as an inverse problem with available operator-product-expansion inputs, we extract excited-state masses from the subtracted spectral density. This formalism is verified by means of the application to the series of $\rho$ resonances, which establishes the $\rho(770)$, $\rho(1450)$ and $\rho(1700)$ mesons one by one under the sequential subtraction procedure. Our previous study has suggested the admixture of the $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$ mesons (the $\eta(1760)$ meson) to be the lightest scalar (pseudoscalar) glueball. The present work predicts that the $f_0(2200)$ ($X(2370)$) meson is the first excited scalar (pseudoscalar) glueball.
Received: 15 August 2024      Editors' Suggestion Published: 26 October 2024
PACS:  11.55.Hx (Sum rules)  
  12.38.-t (Quantum chromodynamics)  
  14.40.Rt (Exotic mesons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/101101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/101101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hsiang-nan Li
[1] Ablikim M et al. [BESIII] 2024 Phys. Rev. Lett. 132 181901
[2] Bali G S, Schilling K, Hulsebos A, Irving A C, Michael C, and Stephenson P W 1993 Phys. Lett. B 309 378
[3] Morningstar C J and Peardon M 1999 Phys. Rev. D 60 034509
[4] Chen Y, Alexandru A, Dong S J, Draper T, Horvath I, Lee F X, Liu K F, Mathur N, Morningstar C, Peardon M et al. 2006 Phys. Rev. D 73 014516
[5] Athenodorou A and Teper M 2020 J. High Energy Phys. 2020(11) 172
[6] Gui L C, Dong J M, Chen Y, and Yang Y B 2019 Phys. Rev. D 100 054511
[7] Liu K F 2008 AIP Conf. Proc. 1030 305
[8] Cheng H Y, Li H N, and Liu K F 2009 Phys. Rev. D 79 014024
[9] Shifman M A, Vainshtein A I, and Zakharov V I 1979 Nucl. Phys. B 147 385; 1979 Nucl. Phys. B 147 448
[10] Corianò C and Li H N 1994 Phys. Lett. B 324 98
[11] Corianò C, Li H N, and Savkli C 1998 J. High Energy Phys. 1998(07) 008
[12] Leinweber D B 1997 Ann. Phys. 254 328
[13] Huang T, Jin H Y, and Zhang A L 1999 Phys. Rev. D 59 034026
[14] Harnett D and Steele T G 2001 Nucl. Phys. A 695 205
[15] Gubler P and Oka M 2010 Prog. Theor. Phys. 124 995
[16] Li H N and Umeeda H 2020 Phys. Rev. D 102 114014
[17] Li H N 2021 Phys. Rev. D 104 114017
[18] Zhao Z X, Xing Y P, and Li R H 2024 arXiv:2407.09819 [hep-ph]
[19] Li H N 2022 Phys. Rev. D 106 034015
[20] Li H N, Umeeda H, Xu F, and Yu F S 2020 Phys. Lett. B 810 135802
[21] Xiong A S, Wei T, and Yu F S 2022 arXiv:2211.13753 [hep-th]
[22] Li H N and Umeeda H 2020 Phys. Rev. D 102 094003
[23] Navas S et al. 2024 Phys. Rev. D 110 030001
[24] She Z L, Lei A K, Zhang W C, Yan Y L, Zhou D M, Zheng H, and Sa B H 2024 arXiv:2407.07661 [hep-ph]
[25] Cao J, She Z L, Zhang J P et al. 2024 arXiv:2408.04130 [hep-ph]
[26] Eshraim W I 2019 Phys. Rev. D 100 096007
[27] Eshraim W I 2023 Eur. Phys. J. C 83 262
[28] Chung Y, Dosch H G, Kremer M, and Schall D 1984 Z. Phys. C 25 151
[29] Narison S 1995 Phys. Lett. B 361 121
[30] Narison S 2009 Phys. Lett. B 673 30
[31] Kwon Y, Procura M, and Weise W 2008 Phys. Rev. C 78 055203
[32] Groetsch C W 2007 J. Phys.: Conf. Ser. 73 012001
[33] Wang Q N, Zhang Z F, Steele T G, Jin H Y, and Huang Z R 2017 Chin. Phys. C 41 074107
[34] Narison S 2015 Nucl. Part. Phys. Proc. 258–259 189
[35] Narison S 1998 Nucl. Phys. B 509 312
[36] Forkel H 2005 Phys. Rev. D 71 054008
[37] Chetyrkin K G, Gorishny S G, and Spiridonov V P 1985 Phys. Lett. B 160 149; Surguladze L R and Tkachov F V 1990 Nucl. Phys. B 331 35
[38] Mathieu V, Kochelev N, and Vento V 2009 Int. J. Mod. Phys. E 18 1
[39] Novikov V A, Shifman M A, Vainshtein A I, and Zakharov V I 1981 Nucl. Phys. B 191 301; Shifman M A 1991 Phys. Rep. 209 341
[40] Forkel H 2001 Phys. Rev. D 64 034015
[41] Wen S, Zhang Z, and Liu J 2011 J. Phys. G 38 015005
[42] Wen S, Zhang Z, and Liu J 2010 Phys. Rev. D 82 016003
[43] Wang F, Chen J, and Liu J 2015 Eur. Phys. J. C 75 460
[44] Yuan X H and Tang L 2010 Commun. Theor. Phys. 54 495
[45] Novikov V A, Shifman M A, Vainshtein A I, and Zakharov V I 1979 Phys. Lett. B 86 347; 1980 Nucl. Phys. B 165 55
[46] Kataev A L, Krasnikov N V, and Pivovarov A A 1982 Nucl. Phys. B 198 508 [erratum: 1997 Nucl. Phys. B 490 505]
[47] Bagan E and Steele T G 1990 Phys. Lett. B 243 413
[48] Chetyrkin K G, Kniehl B A, and Steinhauser M 1997 Phys. Rev. Lett. 79 2184
[49] Harnett D and Steele T G 2004 J. High Energy Phys. 2004(12) 037
[50] Zhang A L and Steele T G 2003 Nucl. Phys. A 728 165
[51] Asner D, Mann R B, Murison J L, and Steele T G 1992 Phys. Lett. B 296 171
[52] Shifman M A, Vainshtein A I, and Zakharov V I 1980 Nucl. Phys. B 166 493; Leutwyler H and Smilga A 1992 Phys. Rev. D 46 5607; for two degenerate avors also see Crewther R J 1977 Phys. Lett. B 70 349
[53] Novikov V A and Shifman M A 1981 Z. Phys. C 8 43
[54] Shifman M A 1981 Z. Phys. C 9 347
[55] Bagán E, Latorre J I, Pascual P, and Tarrach R 1985 Nucl. Phys. B 254 555
[56] Panagopoulos H and Vicari E 1990 Nucl. Phys. B 332 261; DiGiacomo A, Fabricius K, and Paffuti G 1982 Phys. Lett. B 118 129
[57] Leutwyler H and Smilga A 1992 Phys. Rev. D 46 5607
[58] Novikov V A, Shifman M A, Vainshtein A I, and Zakharov V I 1980 Nucl. Phys. B 165 67
[59] Reinders L J, Rubenstein H, and Yazaki S 1985 Phys. Rep. 127 1
[60] Narison S 2010 Phys. Lett. B 693 559; Erratum: 2011 Phys. Lett. B 705 544; 2012 Phys. Lett. B 706 412; 2012 Phys. Lett. B 707 259
[61] Narison S and Veneziano G 1989 Int. J. Mod. Phys. A 4 2751
[62] Amsler C and Close F E 1995 Phys. Lett. B 353 385; Close F E and Kirk A 2000 Phys. Lett. B 483 345; Close F E and Zhao Q 2005 Phys. Rev. D 71 094022
[63] Giacosa F, Gutsche T, Lyubovitskij V E, and Faessler A 2005 Phys. Rev. D 72 094006
[64] Vento V 2006 Phys. Rev. D 73 054006
[65] Fariborz A H 2006 Phys. Rev. D 74 054030
[66] Fariborz A H 2004 Int. J. Mod. Phys. A 19 2095
[67] Cheng H Y, Chua C K, and Liu K F 2015 Phys. Rev. D 92 094006
[68] Noshad H, Mohammad Zebarjad S, and Zarepour S 2018 Nucl. Phys. B 934 408
[69] Guo X D, Ke H W, Zhao M G, Tang L, and Li X Q 2021 Chin. Phys. C 45 023104
[70] Narison S 2022 Nucl. Phys. A 1017 122337
[71] Chen H X, Chen W, and Zhu S L 2021 Phys. Rev. D 104 094050
[72] Zhang L, Chen C, Chen Y, and Huang M 2022 Phys. Rev. D 105 026020
[73] Sonnenschein J and Weissman D 2019 Eur. Phys. J. C 79 326
[74] Kataev A L, Krasnikov N V, and Pivovarov A A 1981 Phys. Lett. B 107 115
[75] Sun W, Gui L C, Chen Y, Gong M, Liu C, Liu Y B, Liu Z, Ma J P, and Zhang J B 2018 Chin. Phys. C 42 093103
[76] Faddeev L, Niemi A J, and Wiedner U 2004 Phys. Rev. D 70 114033
[77] Huber M Q, Fischer C S, and Sanchis-Alepuz H 2020 Eur. Phys. J. C 80 1077
[78] Kaptari L P and Kämpfer B 2020 Few-Body Syst. 61 28
[79] Masoni A, Cicalò C, and Usai G L 2006 J. Phys. G 32 R293
[80] He S, Huang M, and Yan Q S 2010 Phys. Rev. D 81 014003
[81] Tsai Y D, Li H N, and Zhao Q 2012 Phys. Rev. D 85 034002
[82] Qin W, Zhao Q, and Zhong X H 2018 Phys. Rev. D 97 096002
[83] Li X Q and Page P R 1998 Eur. Phys. J. C 1 579
[84] Wu N, Ruan T N, and Zheng Z P 2001 Chin. Phys. 10 611
[85] Ablikim M et al. [BES] 2006 Phys. Rev. D 73 112007
[86] Coffman D et al. 1990 Phys. Rev. D 41 1410; Augustin J E et al. (DM2 Collaboration) 1990 Phys. Rev. D 42 10; Bai J Z et al. (BES Collaboration) 2004 Phys. Lett. B 594 47
[87] Ablikim M et al. [BESIII] 2018 Phys. Rev. D 97 051101
Related articles from Frontiers Journals
[1] Darwish Eed M.. Contribution of Coherent and Incoherent π-Photoproduction Channels to the Spin Asymmetry and the GDH Sum Rule for the Deuteron[J]. Chin. Phys. Lett., 2015, 32(12): 101101
[2] MO Xin, LIU Jue-Ping. The Scalar Photon Light-Cone Distribution Amplitude in the Instanton Vacuum Model of QCD[J]. Chin. Phys. Lett., 2014, 31(04): 101101
[3] YOU Fu-Yi, WANG Zhi-Gang, WAN Shao-Long. Analysis of the Vertexes ΣQΞQ*K* and Ξ'QΣQ*K* within Light-Cone QCD Sum Rules[J]. Chin. Phys. Lett., 2012, 29(2): 101101
[4] WEN Shui-Guo, LIU Jue-Ping. Ds(0±) Meson Spectroscopy in Gaussian Sum Rules[J]. Chin. Phys. Lett., 2009, 26(2): 101101
[5] ZUO Fen, HUANG Tao. Factors in Light-Cone Sum Rules and the D-Meson Distribution Amplitude[J]. Chin. Phys. Lett., 2007, 24(1): 101101
[6] ZHANG Zhen-Yu, LIU Jue-Ping. Stabilization and Consistency for Subtracted and Unsubtracted QCD Sum Rules for 0++ Scalar Glueball[J]. Chin. Phys. Lett., 2006, 23(11): 101101
[7] HANG Sheng-Xi, ZHANG Zhen-Yu, LIU Jue-Ping. Finite-Width Correction to Form Factors of γγ→ π0 Transition[J]. Chin. Phys. Lett., 2006, 23(9): 101101
[8] ZHU Kai, LIU Jue-Ping, YU Ran. Off-Shell Longitudinal Photon Light-Cone Wavefunction in the Low-Energy Effective Theory of QCD[J]. Chin. Phys. Lett., 2006, 23(5): 101101
[9] YU Ran, LIU Jue-Ping, ZHU Kai. Off-Shell Photon Light-Cone Transverse Wavefunction at Leading Twist[J]. Chin. Phys. Lett., 2005, 22(10): 101101
[10] WU Xiang-Yao, LI Zuo-Hong, CUI Jian-Ying, HUANG Tao. Impacts of the Soft-Gluon Exchanges on B →ππ Decays[J]. Chin. Phys. Lett., 2002, 19(11): 101101
Viewed
Full text


Abstract