Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 101201    DOI: 10.1088/0256-307X/41/10/101201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Precise Determination of the Bottom-Quark On-Shell Mass Using Its Four-Loop Relation to the $\overline{\rm MS}$-Scheme Running Mass
Shun-Yue Ma1, Xu-Dong Huang2*, Xu-Chang Zheng1, and Xing-Gang Wu1
1Department of Physics, Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China
2College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
Cite this article:   
Shun-Yue Ma, Xu-Dong Huang, Xu-Chang Zheng et al  2024 Chin. Phys. Lett. 41 101201
Download: PDF(546KB)   PDF(mobile)(601KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We explore the properties of the bottom-quark on-shell mass ($M_b$) by using its relation to the $\overline{\rm MS}$ mass (${\overline m}_b$). At present, this $\overline{\rm MS}$-on-shell relation has been known up to four-loop QCD corrections, which however still has a $\sim$ $2\%$ scale uncertainty by taking the renormalization scale as ${\overline m}_b({\overline m}_b)$ and varying it within the usual range of $[{\overline m}_b({\overline m}_b)/2,\, 2 {\overline m}_b({\overline m}_b)]$. The principle of maximum conformality (PMC) is adopted to achieve a more precise $\overline{\rm MS}$-on-shell relation by eliminating such scale uncertainty. As a step forward, we also estimate the magnitude of the uncalculated higher-order terms by using the Padé approximation approach. Numerically, by using the $\overline{\rm MS}$ mass ${\overline m}_b({\overline m}_b)=4.183\pm0.007$ GeV as an input, our predicted value for the bottom-quark on-shell mass becomes $M_b\simeq 5.372^{+0.091}_{-0.075}$ GeV, where the uncertainty is the squared average of the ones caused by $\Delta \alpha_s(M_Z)$, $\Delta {\overline m}_b({\overline m}_b)$, and the estimated magnitude of the higher-order terms.
Received: 27 June 2024      Editors' Suggestion Published: 22 October 2024
PACS:  12.38.Bx (Perturbative calculations)  
  12.15.Ff (Quark and lepton masses and mixing)  
  12.10.Kt (Unification of couplings; mass relations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/101201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/101201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shun-Yue Ma
Xu-Dong Huang
Xu-Chang Zheng
and Xing-Gang Wu
[1] Tarrach R 1981 Nucl. Phys. B 183 384
[2] 't Hooft G 1973 Nucl. Phys. B 61 455
[3] Bardeen W A, Buras A J, Duke D W, and Muta T 1978 Phys. Rev. D 18 3998
[4] Beneke M and Braun V M 1995 Phys. Lett. B 348 513
[5] Neubert M 1995 Phys. Rev. D 51 5924
[6] Beneke M 1999 Phys. Rep. 317 1
[7] Gray N, Broadhurst D J, Grafe W, and Schilcher K 1990 Z. Phys. C 48 673
[8] Chetyrkin K G and Steinhauser M 2000 Nucl. Phys. B 573 617
[9] Melnikov K and Ritbergen T V 2000 Phys. Lett. B 482 99
[10] Jegerlehner F, Kalmykov M Y, and Veretin O 2003 Nucl. Phys. B 658 49
[11]Jegerlehner F and Kalmykov M Y 2003 Acta Phys. Pol. B 34 5335
[12] Faisst M, Kühn J H, and Veretin O 2004 Phys. Lett. B 589 35
[13] Marquard P, Mihaila L, Piclum J H, and Steinhauser M 2007 Nucl. Phys. B 773 1
[14] Marquard P, Smirnov A V, Smirnov V A, and Steinhauser M 2015 Phys. Rev. Lett. 114 142002
[15] Marquard P, Smirnov A V, Smirnov V A, Steinhauser M, and Wellmann D 2016 Phys. Rev. D 94 074025
[16] Alam Khan M S A 2023 Phys. Rev. D 108 074029
[17] Kataev A L and Molokoedov V S 2018 JETP Lett. 108 777
[18] Kataev A L and Molokoedov V S 2019 Theor. Math. Phys. 200 1374
[19] Kataev A L and Molokoedov V S 2020 Eur. Phys. J. C 80 1160
[20] Politzer H D 1973 Phys. Rev. Lett. 30 1346
[21] Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343
[22] Politzer H D 1974 Phys. Rep. 14 129
[23] Gross D J and Wilczek F 1973 Phys. Rev. D 8 3633
[24] Chetyrkin K G 2005 Nucl. Phys. B 710 499
[25] Baikov P A, Chetyrkin K G, and Kühn J H 2017 Phys. Rev. Lett. 118 082002
[26] Vermaseren J A M, Larin S A, and van Ritbergen T 1997 Phys. Lett. B 405 327
[27] Chetyrkin K G 1997 Phys. Lett. B 404 161
[28] Baikov P A, Chetyrkin K G, and Kühn J H 2014 J. High Energy Phys. 2014(10) 76
[29] Wu X G, Brodsky S J, and Mojaza M 2013 Prog. Part. Nucl. Phys. 72 44
[30] Wu X G, Ma Y, Wang S Q, Fu H B, Ma H H, Brodsky S J, and Mojaza M 2015 Rep. Prog. Phys. 78 126201
[31] Navas S et al. [Particle Data Group] 2024 Phys. Rev. D 110 030001
[32] Brodsky S J and Wu X G 2012 Phys. Rev. D 85 034038
[33] Brodsky S J and Di Giustino L 2012 Phys. Rev. D 86 085026
[34] Brodsky S J and Wu X G 2012 Phys. Rev. Lett. 109 042002
[35] Mojaza M, Brodsky S J, and Wu X G 2013 Phys. Rev. Lett. 110 192001
[36] Brodsky S J, Mojaza M, and Wu X G 2014 Phys. Rev. D 89 014027
[37] Shen J M, Wu X G, Du B L, and Brodsky S J 2017 Phys. Rev. D 95 094006
[38] Du B L, Wu X G, Shen J M, and Brodsky S J 2019 Eur. Phys. J. C 79 182
[39] Wu X G, Shen J M, Du B L, Huang X D, Wang S Q, and Brodsky S J 2019 Prog. Part. Nucl. Phys. 108 103706
[40] Di Giustino L, Brodsky S J, Ratcliffe P G, Wu X G, and Wang S Q 2024 Prog. Part. Nucl. Phys. 135 104092
[41] Huang X D, Wu X G, Zheng X C, Yan J, Wu Z F, and Ma H H 2024 Chin. Phys. C 48 053113
[42] Basdevant J L 1972 Fortschr. Phys. 20 283
[43] Samuel M A, Li G, and Steinfelds E 1994 Phys. Lett. B 323 188
[44] Samuel M A, Ellis J, and Karliner M 1995 Phys. Rev. Lett. 74 4380
[45] Herren F and Steinhauser M 2018 Comput. Phys. Commun. 224 333
[46] Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300
[47] Shen J M, Qin B H, Yan J, Wang S Q, and Wu X G 2023 J. High Energy Phys. 2023(07) 109
Related articles from Frontiers Journals
[1] Qing Yu, Hua Zhou, Xu-Dong Huang, Jian-Ming Shen, and Xing-Gang Wu. Novel and Self-Consistency Analysis of the QCD Running Coupling $\alpha_{\rm s}(Q)$ in Both the Perturbative and Nonperturbative Domains[J]. Chin. Phys. Lett., 2022, 39(7): 101201
[2] Lihong Wan and Jianhong Ruan. Higher-Twist Effect in Pion Parton Distribution[J]. Chin. Phys. Lett., 2021, 38(4): 101201
[3] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 101201
[4] MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi, LI Yun-De. Quark Loop Contribution to the Gluon Damping Rate in Hot QCD[J]. Chin. Phys. Lett., 2015, 32(12): 101201
[5] LOU Li-Yang, RUAN Jian-Hong. A New Research about Pion Parton Distribution Function[J]. Chin. Phys. Lett., 2015, 32(5): 101201
[6] YANG Zhong-Juan, ZHAO Xiao-Xia. The Production of Ξbb at the Photon Collider[J]. Chin. Phys. Lett., 2014, 31(09): 101201
[7] YANG Zhong-Juan, ZHANG Pei-Feng, ZHENG Ya-Juan. Doubly Heavy Baryon Production in e+ e? Annihilation[J]. Chin. Phys. Lett., 2014, 31(05): 101201
[8] ZHANG Qiong-Lian, WU Xing-Gang, ZHENG Xu-Chang, WANG Sheng-Quan, FU Hai-Bing, FANG Zhen-Yun. Hadronic Decays of the Spin-Singlet Heavy Quarkomium under the Principle of Maximum Conformality[J]. Chin. Phys. Lett., 2014, 31(05): 101201
[9] SONG Mao, LI Gang, MA Wen-Gan, ZHANG Ren-You, GUO Lei, GUO Jian-You. J/ψ Production Associated with the W-Boson at the 7 TeV Large Hadron Collider[J]. Chin. Phys. Lett., 2013, 30(9): 101201
[10] LU Chang-Fang, LÜ Xiao-Fu. Influence of Quark Current Mass on Quark Condensate at Finite Temperature[J]. Chin. Phys. Lett., 2013, 30(9): 101201
[11] HUANG Tao, WU Xing-Gang, ZHONG Tao. Finding a Way to Determine the Pion Distribution Amplitude from the Experimental Data[J]. Chin. Phys. Lett., 2013, 30(4): 101201
[12] FU Yong-Ping, LI Yun-De. Real Photons Produced from Photoproduction in pp Collisions[J]. Chin. Phys. Lett., 2012, 29(10): 101201
[13] DUAN Peng-Fei, ZHANG Ren-You, MA Wen-Gan, HAN Liang, GUO Lei, WANG Shao-Ming . Next-to-Leading Order QCD Corrections to t[J]. Chin. Phys. Lett., 2011, 28(11): 101201
[14] WANG Shuai-Wei, HUANG Jin-Shu, LÜ, Lin-Xia . Bs→ φπ0Decay in the Extra Down-Type Quark Model[J]. Chin. Phys. Lett., 2010, 27(12): 101201
[15] WANG Hong-Min, HOU Zhao-Yu, SUN Xian-Jing. Influence of the Nucleon Hard Partons Distribution on J/Ψ Suppression in a GMC Framework[J]. Chin. Phys. Lett., 2010, 27(5): 101201
Viewed
Full text


Abstract