Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 017102    DOI: 10.1088/0256-307X/41/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Predicted Critical State Based on Invariance of the Lyapunov Exponent in Dual Spaces
Tong Liu1 and Xu Xia2*
1Department of Applied Physics, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Tong Liu and Xu Xia 2024 Chin. Phys. Lett. 41 017102
Download: PDF(1519KB)   PDF(mobile)(1973KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Critical states in disordered systems, fascinating and subtle eigenstates, have attracted a lot of research interests. However, the nature of critical states is difficult to describe quantitatively, and in general, it cannot predict a system that hosts the critical state. We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces, namely the Lyapunov exponent remains invariant under the Fourier transform. With this criterion, we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality, but hosts a large number of critical states. Then, we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state. Due to computational complexity, calculations are not performed for higher dimensional models. However, since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless, utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal. Finally, we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance, which can promote the research of critical phenomena.
Received: 12 September 2023      Published: 19 January 2024
PACS:  71.23.An (Theories and models; localized states)  
  71.23.Ft (Quasicrystals)  
  05.70.Jk (Critical point phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/017102       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/017102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tong Liu and Xu Xia
[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Abrahams E, Anderson P W, Licciardello D C, and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[3] Fleishman L and Licciardello D C 1977 J. Phys. C 10 L125
[4] Mott N 1987 J. Phys. C 20 3075
[5] Lagendijk A, van Tiggelen B, and Wiersma D S 2009 Phys. Today 62 24
[6]Brandes T and Kettemann S 2003 The Anderson Transition and Its Ramifications—Localisation, Quantum Interference, and Interactions (Berlin: Springer) pp 3–19
[7] Soukoulis C M and Economou E N 1982 Phys. Rev. Lett. 48 1043
[8] Sokoloff J B and structure U B 1985 Phys. Rep. 126 189
[9] Hiramoto H and Kohmoto M 1989 Phys. Rev. B 40 8225
[10] Avila A, You J, and Zhou Q 2017 Duke Math. J. 166 2697
[11]Aubry S and André G 1980 Ann. Israel Phys. Soc. 3 133
[12] Gonçalves M, Amorim B, Castro E V, and Ribeiro P 2022 arXiv:2206.13549v2 [cond-mat.dis-nn]
[13] Lin X, Chen X, Guo G, and Gong M 2022 arXiv:2209.03060v1 [quant-ph]
[14] Zhou X, Wang Y, Poon T J, Zhou Q, and Liu X 2022 arXiv:2212.14285v2 [cond-mat.dis-nn]
[15] Liu T, Xia X, Longhi S, and Sanchez-Palencia L 2022 SciPost Phys. 12 027
[16] Liu Y X, Wang Y C, Liu X J, Zhou Q, Chen S, edges E M, and breaking P S 2021 Phys. Rev. B 103 014203
[17] Liu Y X, Wang Y C, Zheng Z H, and Chen S 2021 Phys. Rev. B 103 134208
[18] Cai X M 2021 Phys. Rev. B 103 214202
[19] Cai X M 2022 Phys. Rev. B 106 214207
[20] Avila A 2015 Acta Math. 215 1
[21]See the Supplemental Material for details of (i) derivation of Lyapunov exponent in position space, (iii) more numerical verification
[22] Sarnak P 1982 Commun. Math. Phys. 84 377
[23] Amin K, Nagarajan R, Pandit R, and Bid A 2022 Phys. Rev. Lett. 129 186802
[24] Deng X, Ray S, Sinha S, Shlyapnikov G V, and Santos L 2019 Phys. Rev. Lett. 123 025301
[25] Yao H P, Khoudli A, Bresque L, and Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405
[26] Wardak A and Gong P 2022 Phys. Rev. Lett. 129 048103
[27] Liu F L, Ghosh S, and Chong Y D 2015 Phys. Rev. B 91 014108
[28] Liu T, Guo H, Pu Y, and Longhi S 2020 Phys. Rev. B 102 024205
[29] Bai X and Xue J 2015 Chin. Phys. Lett. 32 010302
[30] Yin Y, Niu Y, Ding M, Liu H, and Liang Z 2016 Chin. Phys. Lett. 33 057202
Related articles from Frontiers Journals
[1] Ao Zhang, Yun-Lin Chen, Chun-Xiu Zhang, Jun Yan. CH$_{3}$NH$_{3}$ Formed by Electron Injection at Heterojunction Inducing Peculiar Properties of CH$_{3}$NH$_{3}$PbI$_{3}$ Material[J]. Chin. Phys. Lett., 2019, 36(2): 017102
[2] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 017102
[3] Rong-Qiang He, Zhong-Yi Lu. Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems[J]. Chin. Phys. Lett., 2018, 35(2): 017102
[4] QIANG Lei, YAO Ruo-He. A Drain Current Model Based on the Temperature Effect of a-Si:H Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(9): 017102
[5] HU Dong-Sheng, ZHANG Yan-Ling, YIN Xiao-Gang, ZHU Chen-Ping, ZHANG Yong-Mei. Resonant Tunneling States of a Pairing Ladder with Random Dimer Chains[J]. Chin. Phys. Lett., 2012, 29(2): 017102
[6] WANG Gui, GONG Xin-Gao. A Possible Structure of the Al36 Cluster: Coexistence of Icosahedral and fcc-Like Structures[J]. Chin. Phys. Lett., 2009, 26(8): 017102
[7] HAO Ya-Fei, CHEN Yong-Hai, HAO Guo-Dong, WANG Zhan-Guo. Electric Field Control of Interface Related Spin Splitting in Step Quantum Wells[J]. Chin. Phys. Lett., 2009, 26(7): 017102
[8] SHI Li-Peng, XIONG Shi-Jie. Screening of Local Magnetic Moment by Electrons of Disordered Graphene[J]. Chin. Phys. Lett., 2009, 26(6): 017102
[9] HAO Ya-Fei, CHEN Yong-Hai, HAO Guo-Dong, WANG Zhan-Guo. Anisotropic Spin Splitting in Step Quantum Wells[J]. Chin. Phys. Lett., 2009, 26(3): 017102
[10] LI Dong-Guang. Cleavage Luminescence from Cleaved Indium Phosphide[J]. Chin. Phys. Lett., 2008, 25(12): 017102
[11] LI Hai-Hong, LI Dong-Mei, LI Yuan, GAO Kun, LIU De-Sheng, XIE Shi-Jie. Charge Injection and Transport in Metal/Polymer Chains/Metal Sandwich Structure[J]. Chin. Phys. Lett., 2008, 25(8): 017102
[12] LIU Yong-Hui, WANG Xue-Feng, LI Shu-Shen. Quantum-Confined Stark Effects in a Single GaN Quantum Dot[J]. Chin. Phys. Lett., 2008, 25(7): 017102
[13] JIANG Xiao-Shu, Walter R. L. Lambrecht. Jahn--Teller Distortion of the Zinc Vacancy in ZnGeP2[J]. Chin. Phys. Lett., 2008, 25(3): 017102
[14] GUO Zi-Zheng. Entanglement in One-Dimensional Anderson Model with Long-Range Correlated Disorder[J]. Chin. Phys. Lett., 2008, 25(3): 017102
[15] XU Ying-Qiang, ZHANG Wei, NIU Zhi-Chuang, WU Rong-Han, WANG Qi-Ming. Effect of SiO2 Encapsulation on the Nitrogen Reorganization in a GaNAs/GaAs Single Quantum Well[J]. Chin. Phys. Lett., 2004, 21(3): 017102
Viewed
Full text


Abstract