Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 017401    DOI: 10.1088/0256-307X/41/1/017401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Signature of Superconductivity in Pressurized La$_{4}$Ni$_{3}$O$_{10}$
Qing Li, Ying-Jie Zhang, Zhe-Ning Xiang, Yuhang Zhang, Xiyu Zhu, and Hai-Hu Wen*
National Laboratory of Solid State Microstructures and Department of Physics, Center for Superconducting Physics and Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Qing Li, Ying-Jie Zhang, Zhe-Ning Xiang et al  2024 Chin. Phys. Lett. 41 017401
Download: PDF(4454KB)   PDF(mobile)(4488KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The discovery of high-temperature superconductivity near 80 K in bilayer nickelate La$_{3}$Ni$_{2}$O$_{7}$ under high pressures has renewed the exploration of superconducting nickelate in bulk materials. The extension of superconductivity in other nickelates in a broader family is also essential. Here, we report the experimental observation of superconducting signature in trilayer nickelate La$_{4}$Ni$_{3}$O$_{10}$ under high pressures. By using a modified sol-gel method and post-annealing treatment under high oxygen pressure, we successfully obtained polycrystalline La$_{4}$Ni$_{3}$O$_{10}$ samples with different transport behaviors at ambient pressure. Then we performed high-pressure electrical resistance measurements on these samples in a diamond-anvil-cell apparatus. Surprisingly, the signature of possible superconducting transition with a maximum transition temperature ($T_{\rm c}$) of about 20 K under high pressures is observed, as evidenced by a clear drop of resistance and the suppression of resistance drops under magnetic fields. Although the resistance drop is sample-dependent and relatively small, it appears in all of our measured samples. We argue that the observed superconducting signal is most likely to originate from the main phase of La$_{4}$Ni$_{3}$O$_{10}$. Our findings will motivate the exploration of superconductivity in a broader family of nickelates and shed light on the understanding of the underlying mechanisms of high-$T_{\rm c}$ superconductivity in nickelates.
Received: 16 November 2023      Editors' Suggestion Published: 07 January 2024
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  61.66.Fn (Inorganic compounds)  
  62.50.-p (High-pressure effects in solids and liquids)  
  74.25.F- (Transport properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/017401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/017401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing Li
Ying-Jie Zhang
Zhe-Ning Xiang
Yuhang Zhang
Xiyu Zhu
and Hai-Hu Wen
[1] Bednorz J G and Müller K A 1986 Z. Phys. B-Condens. Matter 64 189
[2] Sawa H, Suzuki S, Watanabe M, Akimitsu J, Matsubara H, Watabe H, Uchida S, Kokusho K, Asano H, Izumi F, and Takayama-Muromachi E 1989 Nature 337 347
[3] Smith M G, Manthiram A, Zhou J, Goodenough J B, and Markert J T 1991 Nature 351 549
[4] Yvon K and Frangois M 1989 Z. Phys. B-Condens. Matter 76 413
[5] Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179
[6] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[7] Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901
[8] Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404
[9] Li D f, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[10] Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, and Wen H H 2020 Nat. Commun. 11 6027
[11] Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F, and Hwang H Y 2020 Nano Lett. 20 5735
[12] Zeng S W, Li J C, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, and Ariando A 2022 Sci. Adv. 8 eabl9927
[13] Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083
[14] Pan G A, Ferenc S D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Cordova C D, N`Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater. 21 160
[15] Wei W Z, Vu D, Zhang Z, Walker F J, and Ahn C H 2023 Sci. Adv. 9 eadh3327
[16] Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, and Qiao L 2023 Nature 615 50
[17] Gu Q Q and Wen H H 2022 Innovation 3 100202
[18] Gao Q, Zhao Y, Zhou X J, and Zhu Z 2021 Chin. Phys. Lett. 38 077401
[19] Xiang Y, Li Q, Li Y, Yang H, Nie Y, and Wen H H 2021 Chin. Phys. Lett. 38 047401
[20] Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, and Cheng J G 2022 Nat. Commun. 13 4367
[21] Li Q, He C, Si J, Zhu X, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16
[22] Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409
[23] Cui Y, Li C, Li Q, Zhu X, Hu Z, Yang Y F, Zhang J, Yu R, Wen H H, and Yu W 2021 Chin. Phys. Lett. 38 067401
[24] Beznosikov B V and Aleksandrov K S 2000 Crystallogr. Rep. 45 792
[25] Lacorre P 1992 J. Solid State Chem. 97 495
[26] Catalano S, Gibert M, Fowlie J, Íñiguez J, Triscone J M, and Kreisel J 2018 Rep. Prog. Phys. 81 046501
[27] Zhang J J and Tao X T 2021 CrystEngComm 23 3249
[28] Wu G Q, Neumeier J J, and Hundley M F 2001 Phys. Rev. B 63 245120
[29] Zhang J J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, and Mitchell J F 2020 Phys. Rev. Mater. 4 083402
[30] Huangfu S X, Jakub G D, Zhang X, Blacque O, Puphal P, Pomjakushina E, von Rohr F O, and Schilling A 2020 Phys. Rev. B 101 104104
[31] Li B Z, Wang C, Yang P T, Sun J P, Liu Y B, Wu J, Ren Z, Cheng J G, Zhang G M, and Cao G H 2020 Phys. Rev. B 101 195142
[32] Li Q, He C, Zhu X, Si J, Fan X, and Wen H H 2021 Sci. Chin. Phys. Mech. & Astron. 64 227411
[33] Huo M W, Liu Z J, Sun H L, Li L S, Lui H, Huang C X, Liang F X, Shen B, and Wang M 2022 Chin. Phys. B 31 107401
[34] He C P, Ming X, Li Q, Zhu X Y, Si J, and Wen H H 2021 J. Phys.: Condens. Matter 33 265701
[35] Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L, Liu H, Yu J, Zhang Z, Chen Z, Liang F, Dong H, Guo H, Zhong D, Shen B, Li S, and Wang M 2022 Sci. Chin. Phys. Mech. & Astron. 66 217411
[36] Li Z, Guo W, Zhang T T, Song J H, Gao T Y, Gu Z B, and Nie Y F 2020 APL Mater. 8 091112
[37] Li H X, Zhou X Q, Nummy T, Zhang J J, Pardo V, Pickett W E, Mitchell J F, and Dessau D S 2017 Nat. Commun. 8 704
[38] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B, Cheng J, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493
[39] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302
[40] Zhang Y, Su D, Huang Y, Sun H, Huo M, Shan Z, Ye K, Yang Z, Li R, Smidman M, Wang M, Jiao L, and Yuan H 2023 arXiv:2307.14819 [cond-mat.supr-con]
[41] Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, and Qi Y 2023 arXiv:2309.01651 [cond-mat.supr-con]
[42] Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, and Kuroki K 2023 arXiv:2309.09462 [cond-mat.supr-con]
[43] Wang G, Wang N, Hou J, Ma L, Shi L, Ren Z, Gu Y, Shen X, Ma H, Yang P, Liu Z, Guo H, Sun J, Zhang G, Yan J, Wang B, Uwatoko Y, and Cheng J 2023 arXiv:2309.17378 [cond-mat.supr-con]
[44] Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con]
[45] Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, and Zhou X J 2023 arXiv:2309.01148 [cond-mat.supr-con]
[46] Luo Z H, Hu X W, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001
[47] Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505
[48] Sakakibara H, Kitamine N, Ochi M, and Kuroki K 2023 arXiv:2306.06039 [cond-mat.supr-con]
[49]Gu Y, Le C, Yang Z, Wu X, and Hu J 2023 arXiv:2306.07275 [cond-mat.supr-con]
[50] Yang Y F, Zhang G M, and Zhang F C 2023 Phys. Rev. B 108 L201108
[51] Lechermann F, Gondolf J, Bötzel S, and Eremin I M 2023 Phys. Rev. B 108 L201121
[52] Chen X, Jiang P, Li J, Zhong Z, and Lu Y Lu Y 2023 arXiv:2307.07154 [cond-mat.supr-con]
[53] Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401
[54] Geisler B, Hamlin J J, Stewart G R, Hennig R G, and Hirschfeld P J 2023 arXiv:2309.15078 [cond-mat.supr-con]
[55] Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002
[56] Kumar S, Fjellvåg Ø, Sjåstad A O, and Fjellvåg H 2020 J. Magn. Magn. Mater. 496 165915
[57] Huangfu S, Zhang X, and Schilling A 2020 Phys. Rev. Res. 2 033247
[58] Segedin D F, Goodge B H, Pan G A et al. 2023 Nat. Commun. 14 1468
[59] Zhang Z and Greenblatt M 1995 J. Solid State Chem. 117 236
[60] Yuan N, Elghandour A, Arneth J, Dey K, and Klingeler R 1995 J. Cryst. Growth 627 127511
[61] Zhang J J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, and Mitchell J F 2020 Nat. Commun. 11 6003
[62] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[63] Wen H H 2008 Adv. Mater. 20 3764
[64] Carvalho M D, Costa F M A, Pereira I D S, Wattiaux A, Bassat J M, Grenier J C, and Pouchard M 1997 J. Mater. Chem. 7 2107
[65] Cheary R W and Coelho A 1992 J. Appl. Crystallogr. 25 109
[66] Mao H K, Xu J, and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673
[67] Ling C D, Argyriou D N, Wu G Q, and Neumeier J J 2000 J. Solid State Chem. 152 517
[68] Carvalho M D, Cruz M M, Wattiaux A, Bassat J M, Costa F M A, and Godinho M 2000 J. Appl. Phys. 88 544
[69] Bassat J M, Allançon C, Odier P, Loup J P, Carvalho M D, and Wattiaux A 1998 Eur. J. Solid State Inorg. Chem. 35 173
[70] Li Q, Si J, Duan T, Zhu X, and Wen H H 2020 Philos. Mag. 100 2402
[71] Retoux R, Rodriguez-Carvajal J, and Lacorre P 1998 J. Solid State Chem. 140 307
[72] Zhu Y, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Guo J, and Zhao J 2023 arXiv:2311.07353 [cond-mat.supr-con]
[73] Zhang M, Pei C, Du X, Cao Y, Wang Q, Wu J, Li Y, Zhao Y, Li C, Cao W, Zhu S, Zhang Q, Yu N, Cheng P, Zhao J, Chen Y, Guo H, Yang L, and Qi Y 2023 arXiv:2311.07423 [cond-mat.supr-con]
Related articles from Frontiers Journals
[1] Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang. High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(1): 017401
[2] Yang Shen, Mingpu Qin, and Guang-Ming Zhang. Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-$T_{\rm c}$ Superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under High Pressure[J]. Chin. Phys. Lett., 2023, 40(12): 017401
[3] Run Lv, Wenqian Tu, Dingfu Shao, Yuping Sun, and Wenjian Lu. Physical Origin of Color Changes in Lutetium Hydride under Pressure[J]. Chin. Phys. Lett., 2023, 40(11): 017401
[4] Jun Hou, Peng-Tao Yang, Zi-Yi Liu, Jing-Yuan Li, Peng-Fei Shan, Liang Ma, Gang Wang, Ning-Ning Wang, Hai-Zhong Guo, Jian-Ping Sun, Yoshiya Uwatoko, Meng Wang, Guang-Ming Zhang, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of High-Temperature Superconducting Phase in Pressurized La$_{3}$Ni$_{2}$O$_7$ Crystals[J]. Chin. Phys. Lett., 2023, 40(11): 017401
[5] Bin Li, Yeqian Yang, Yuxiang Fan, Cong Zhu, Shengli Liu, and Zhixiang Shi. Theoretical Predictions on Superconducting Phase above Room Temperature in Lutetium-Beryllium Hydrides at High Pressures[J]. Chin. Phys. Lett., 2023, 40(9): 017401
[6] Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors[J]. Chin. Phys. Lett., 2023, 40(9): 017401
[7] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 017401
[8] Yueying Li, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu, and Yuefeng Nie. Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2023, 40(7): 017401
[9] Fankai Xie, Tenglong Lu, Ze Yu, Yaxian Wang, Zongguo Wang, Sheng Meng, and Miao Liu. Lu–H–N Phase Diagram from First-Principles Calculations[J]. Chin. Phys. Lett., 2023, 40(5): 017401
[10] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 017401
[11] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 017401
[12] Bing Huang. What Are the Roles of Hydrogen in Infinite-Layer Nickelates?[J]. Chin. Phys. Lett., 2023, 40(5): 017401
[13] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 017401
[14] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 017401
[15] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 017401
Viewed
Full text


Abstract