Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 017101    DOI: 10.1088/0256-307X/41/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Topological Dirac Semimetal Transition Driven by SOC in EuMg$_2$Bi$_2$
J. M. Wang1,2, H. J. Qian3, Q. Jiang4, S. Qiao1,2,5*, and M. Ye6,1,2*
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, China
4Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
5School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
6Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Cite this article:   
J. M. Wang, H. J. Qian, Q. Jiang et al  2024 Chin. Phys. Lett. 41 017101
Download: PDF(12229KB)   PDF(mobile)(12246KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena. Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects. We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg$_2$Bi$_2$ using first-principles calculations and angle-resolved photoemission spectroscopy. Our calculations reveal that the spin–orbit coupling (SOC) in EuMg$_2$Bi$_2$ prompts an insulator to topological semimetal transition, with the Dirac bands protected by crystal symmetries. The linearly dispersive states near the Fermi level, primarily originating from Bi 6$p$ orbitals, are observed on both the (001) and (100) surfaces, confirming that EuMg$_2$Bi$_2$ is a three-dimensional topological Dirac semimetal. This research offers pivotal insights into the interplay between magnetism, SOC and topological phase transitions in spintronics applications.
Received: 12 October 2023      Published: 07 January 2024
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/017101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/017101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
J. M. Wang
H. J. Qian
Q. Jiang
S. Qiao
and M. Ye
[1] Liu Z, Zhou B, Zhang Y et al. 2014 Science 343 864
[2] Feng J Y, Pang Y, Wu D S et al. 2015 Phys. Rev. B 92 081306
[3] Liang T, Gibson Q, Ali M N et al. 2015 Nat. Mater. 14 280
[4] Xiong J, Kushwaha S K, Liang T et al. 2015 Science 350 413
[5] Yu R, Zhang W, Zhang H J et al. 2010 Science 329 61
[6] Chang C Z, Zhang J, Feng X et al. 2013 Science 340 167
[7] Essin A M, Moore J E, and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
[8] Mogi M, Kawamura M, Yoshimi R et al. 2017 Nat. Mater. 16 516
[9] Xu Y F, Song Z D, Wang Z J et al. 2019 Phys. Rev. Lett. 122 256402
[10] Pierantozzi G M, De Vita A, Bigi C et al. 2022 Proc. Natl. Acad. Sci. USA 119 e2116575119
[11] Qi X L, Hughes T L, and Zhang S C 2010 Phys. Rev. B 82 184516
[12] Kozii V, Venderbos J W, and Fu L 2016 Sci. Adv. 2 e1601835
[13] Wang Q, Xu Y, Lou R et al. 2018 Nat. Commun. 9 3681
[14] Liu D, Liang A, Liu E et al. 2019 Science 365 1282
[15] Watson L, Marshall C, and Cardoso C 1984 J. Phys. F 14 113
[16] Zhang X M, Jin L, Dai X F et al. 2017 J. Phys. Chem. Lett. 8 4814
[17] Chang T R, Pletikosic I, Kong T et al. 2019 Adv. Sci. 6 1800897
[18] Zhou T, Zhu X G, Tong M et al. 2019 Chin. Phys. Lett. 36 117303
[19] May A F, McGuire M A, Singh D J et al. 2011 Inorg. Chem. 50 11127
[20] Ramirez D, Gallagher A, Baumbach R et al. 2015 J. Solid State Chem. 231 217
[21] May A F, McGuire M A, Singh D J et al. 2012 Phys. Rev. B 85 035202
[22] Kundu A K, Pakhira S, Roy T et al. 2022 Phys. Rev. B 106 245131
[23] Kundu A K, Roy T, Pakhira S et al. 2022 npj Quantum Mater. 7 67
[24] Takane D, Kubota Y, Nakayama K et al. 2021 Sci. Rep. 11 21937
[25] Shuai J, Geng H, Lan Y et al. 2016 Proc. Natl. Acad. Sci. USA 113 E4125
[26] Marshall M, Pletikosić I, Yahyavi M et al. 2021 J. Appl. Phys. 129 035106
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Wu Q S, Zhang S N, Song H F et al. 2018 Comput. Phys. Commun. 224 405
[30] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[31] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685
[32] Zhang Z Y, Zhang R W, Li X R et al. 2018 J. Phys. Chem. Lett. 9 6224
Related articles from Frontiers Journals
[1] Sheng Zhang, Haohao Sheng, Zhi-Da Song, Chenhao Liang, Yi Jiang, Song Sun, Quansheng Wu, Hongming Weng, Zhong Fang, Xi Dai, and Zhijun Wang. VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations[J]. Chin. Phys. Lett., 2023, 40(12): 017101
[2] Yao Wang, Zhenzhen Lei, Jinsen Zhang, Xinyong Tao, Chenqiang Hua, and Yunhao Lu. Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium[J]. Chin. Phys. Lett., 2023, 40(11): 017101
[3] Guanghui Cai, Yutao Jiang, Hui Zhou, Ze Yu, Kun Jiang, Youguo Shi, Sheng Meng, and Miao Liu. Energy Landscape and Phase Competition of CsV$_{3}$Sb$_{5}$, CsV$_{6}$Sb$_{6}$ and TbMn$_{6}$Sn$_{6}$-Type Kagome Materials[J]. Chin. Phys. Lett., 2023, 40(11): 017101
[4] Guangyu Wang, Ke Yang, Yaozhenghang Ma, Lu Liu, Di Lu, Yuxuan Zhou, and Hua Wu. Superexchange Interactions and Magnetic Anisotropy in MnPSe$_3$ Monolayer[J]. Chin. Phys. Lett., 2023, 40(7): 017101
[5] Zhiqiang Ji, Tian Huang, Ying Li, Xiaoyu Liu, Lujun Wei, Hong Wu, Jimeng Jin, Yong Pu, and Feng Li. Magnetic Phase Transition in Strained Two-Dimensional CrSeTe Monolayer[J]. Chin. Phys. Lett., 2023, 40(5): 017101
[6] Jierui Huang, Tan Zhang, Sheng Xu, Zhicheng Rao, Jiajun Li, Junde Liu, Shunye Gao, Yaobo Huang, Wenliang Zhu, Tianlong Xia, Hongming Weng, and Tian Qian. Electronic Structure of the Weak Topological Insulator Candidate Zintl Ba$_{3}$Cd$_{2}$Sb$_{4}$[J]. Chin. Phys. Lett., 2023, 40(4): 017101
[7] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 017101
[8] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 017101
[9] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 017101
[10] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 017101
[11] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 017101
[12] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 017101
[13] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 017101
[14] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 017101
[15] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 017101
Viewed
Full text


Abstract