CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magnetic Topological Dirac Semimetal Transition Driven by SOC in EuMg$_2$Bi$_2$ |
J. M. Wang1,2, H. J. Qian3, Q. Jiang4, S. Qiao1,2,5*, and M. Ye6,1,2* |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, China 4Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China 5School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 6Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
|
|
Cite this article: |
J. M. Wang, H. J. Qian, Q. Jiang et al 2024 Chin. Phys. Lett. 41 017101 |
|
|
Abstract Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena. Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects. We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg$_2$Bi$_2$ using first-principles calculations and angle-resolved photoemission spectroscopy. Our calculations reveal that the spin–orbit coupling (SOC) in EuMg$_2$Bi$_2$ prompts an insulator to topological semimetal transition, with the Dirac bands protected by crystal symmetries. The linearly dispersive states near the Fermi level, primarily originating from Bi 6$p$ orbitals, are observed on both the (001) and (100) surfaces, confirming that EuMg$_2$Bi$_2$ is a three-dimensional topological Dirac semimetal. This research offers pivotal insights into the interplay between magnetism, SOC and topological phase transitions in spintronics applications.
|
|
Received: 12 October 2023
Published: 07 January 2024
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] | Liu Z, Zhou B, Zhang Y et al. 2014 Science 343 864 |
[2] | Feng J Y, Pang Y, Wu D S et al. 2015 Phys. Rev. B 92 081306 |
[3] | Liang T, Gibson Q, Ali M N et al. 2015 Nat. Mater. 14 280 |
[4] | Xiong J, Kushwaha S K, Liang T et al. 2015 Science 350 413 |
[5] | Yu R, Zhang W, Zhang H J et al. 2010 Science 329 61 |
[6] | Chang C Z, Zhang J, Feng X et al. 2013 Science 340 167 |
[7] | Essin A M, Moore J E, and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805 |
[8] | Mogi M, Kawamura M, Yoshimi R et al. 2017 Nat. Mater. 16 516 |
[9] | Xu Y F, Song Z D, Wang Z J et al. 2019 Phys. Rev. Lett. 122 256402 |
[10] | Pierantozzi G M, De Vita A, Bigi C et al. 2022 Proc. Natl. Acad. Sci. USA 119 e2116575119 |
[11] | Qi X L, Hughes T L, and Zhang S C 2010 Phys. Rev. B 82 184516 |
[12] | Kozii V, Venderbos J W, and Fu L 2016 Sci. Adv. 2 e1601835 |
[13] | Wang Q, Xu Y, Lou R et al. 2018 Nat. Commun. 9 3681 |
[14] | Liu D, Liang A, Liu E et al. 2019 Science 365 1282 |
[15] | Watson L, Marshall C, and Cardoso C 1984 J. Phys. F 14 113 |
[16] | Zhang X M, Jin L, Dai X F et al. 2017 J. Phys. Chem. Lett. 8 4814 |
[17] | Chang T R, Pletikosic I, Kong T et al. 2019 Adv. Sci. 6 1800897 |
[18] | Zhou T, Zhu X G, Tong M et al. 2019 Chin. Phys. Lett. 36 117303 |
[19] | May A F, McGuire M A, Singh D J et al. 2011 Inorg. Chem. 50 11127 |
[20] | Ramirez D, Gallagher A, Baumbach R et al. 2015 J. Solid State Chem. 231 217 |
[21] | May A F, McGuire M A, Singh D J et al. 2012 Phys. Rev. B 85 035202 |
[22] | Kundu A K, Pakhira S, Roy T et al. 2022 Phys. Rev. B 106 245131 |
[23] | Kundu A K, Roy T, Pakhira S et al. 2022 npj Quantum Mater. 7 67 |
[24] | Takane D, Kubota Y, Nakayama K et al. 2021 Sci. Rep. 11 21937 |
[25] | Shuai J, Geng H, Lan Y et al. 2016 Proc. Natl. Acad. Sci. USA 113 E4125 |
[26] | Marshall M, Pletikosić I, Yahyavi M et al. 2021 J. Appl. Phys. 129 035106 |
[27] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[28] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[29] | Wu Q S, Zhang S N, Song H F et al. 2018 Comput. Phys. Commun. 224 405 |
[30] | Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 |
[31] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685 |
[32] | Zhang Z Y, Zhang R W, Li X R et al. 2018 J. Phys. Chem. Lett. 9 6224 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|