Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 014205    DOI: 10.1088/0256-307X/41/1/014205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Modulation of High-Order Harmonic Generation from a Monolayer ZnO by Co-rotating Two-Color Circularly Polarized Laser Fields
Yue Qiao1,2,3, Jiaqi Chen1, Shushan Zhou4, Jigen Chen1*, Shicheng Jiang5*, and Yujun Yang2,3*
1School of Materials Science and Engineering, Taizhou University, Jiaojiang 318000, China
2Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
3Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun 130012, China
4School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
5State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Cite this article:   
Yue Qiao, Jiaqi Chen, Shushan Zhou et al  2024 Chin. Phys. Lett. 41 014205
Download: PDF(6866KB)   PDF(mobile)(6873KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By numerically solving the two-dimensional semiconductor Bloch equation, we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses. By changing the relative phase between the fundamental frequency field and the second one, it is found that the harmonic intensity in the platform region can be significantly modulated. In the higher order, the harmonic intensity can be increased by about one order of magnitude. Through time-frequency analysis, it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase, and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability. In addition, near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields. With the change of the relative phase, the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one. Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity, which provides an opportunity for syntheses of circularly polarized attosecond pulses.
Received: 04 December 2023      Published: 16 January 2024
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  42.25.Ja (Polarization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/014205       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/014205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue Qiao
Jiaqi Chen
Shushan Zhou
Jigen Chen
Shicheng Jiang
and Yujun Yang
[1] Yuan H Y, Yang Y J, Guo F M, Wang J, Chen J G, Feng W, and Cui Z W 2023 Opt. Express 31 24213
[2] Yuan H Y, Yang Y J, Guo F M, Wang J, and Cui Z W 2022 Opt. Express 30 19745
[3] Li X F, Qiao Y, Wu D, Yu R X, Chen J G, Wang J, Guo F M, and Yang Y J 2024 Chin. Phys. B 33 013302
[4] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A, and Corkum P B 1994 Phys. Rev. A 49 2117
[5] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, and Reis D A 2016 Nature 534 520
[6] Zeng A W and Bian X B 2020 Phys. Rev. Lett. 124 203901
[7] Yuan G L, Lu R F, Jiang S C, and Dorfman K 2023 Ultrafast Sci. 3 0040
[8] Jiang S C and Dorfman K 2020 Proc. Natl. Acad. Sci. USA 117 9776
[9] Yue L and Gaarde M B 2022 J. Opt. Soc. Am. B 39 535
[10] Fu T T, Zhou S S, Chen J G, Wang J, Guo F M, and Yang Y J 2023 Opt. Express 31 30171
[11] Fu T T, Qiao Y, Wang J, Guo F M, and Yang Y 2023 Phys. Rev. A 108 033115
[12] Qiao Y, Wang X, Li X, Wu L, Yu R, Guo F, Wang J, Chen J, and Yang Y 2023 Opt. Express 31 36327
[13] Jia G R, Zhao D X, Zhang S S, Yue Z W, Qin C C, Jiao Z Y, and Bian X B 2023 Chin. Phys. Lett. 40 103202
[14] Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, and Cheng Y 2021 Chin. Phys. Lett. 38 123301
[15] Lanin A A, Stepanov E A, Fedotov A B, and Zheltikov A M 2017 Optica 4 516
[16] Li L, Lan P, He L, Cao W, Zhang Q, and Lu P 2020 Phys. Rev. Lett. 124 157403
[17] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D, and Corkum P B 2015 Phys. Rev. Lett. 115 193603
[18] Qiao Y, Huo Y, Liang H, Chen J, Liu W, Yang Y, and Jiang S 2023 Phys. Rev. B 107 075201
[19] Wu D, Li L, Zhan Y, Huang T, Cui H, Li J, Lan P, and Lu P 2022 Phys. Rev. A 105 063101
[20] Qiao Y, Huo Y Q, Jiang S C, Yang Y J, and Chen J G 2022 Opt. Express 30 9971
[21] Zhao Y T, Ma S Y, Jiang S C, Yang Y J, Zhao X, and Chen J G 2019 Opt. Express 27 34392
[22] Lakhotia H, Kim H, Zhan M, Hu S, Meng S, and Goulielmakis E 2020 Nature 583 55
[23] Luu T T and Worner H J 2018 Nat. Commun. 9 916
[24] Antoine P, L'Huillier A, and Lewenstein M 1996 Phys. Rev. Lett. 77 1234
[25] Nourbakhsh Z, Tancogne-Dejean N, Merdji H, and Rubio A 2021 Phys. Rev. Appl. 15 014013
[26] Hu S Q and Meng S 2023 Chin. Phys. Lett. 40 117801
[27] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B, Chen J, and Lin C D 2020 Phys. Rev. Appl. 13 034043
[28] Zhou S S, Yang Y J, Yang Y, Suo M Y, Li D Y, Qiao Y, Yuan H Y, Lan W D, and Hu M H 2023 Chin. Phys. B 32 013201
[29] Tao W, Wang L, Song P, Xiao F, Wang J, Zheng Z, Zhao J, Wang X, and Zhao Z 2023 Chin. Phys. Lett. 40 063201
[30] Zhou X B, Lock R, Wagner N, Li W, Kapteyn H C, and Murnane M M 2009 Phys. Rev. Lett. 102 073902
[31] Cireasa R, Boguslavskiy A, Pons B et al. 2015 Nat. Phys. 11 654
[32] Graves C, Reid A, Wang T et al. 2013 Nat. Mater. 12 293
[33] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, and Reis D A 2011 Nat. Phys. 7 138
[34] Lang Y, Peng Z, Liu J, Zhao Z, and Ghimire S 2022 Phys. Rev. Lett. 129 167402
[35] Jiang S C, Chen J G, Wei H, Yu C, Lu R, and Lin C D 2018 Phys. Rev. Lett. 120 253201
[36] Lv Y Y, Xu J, Han S, Zhang C, Han Y, Zhou J, Yao S H, Liu X P, Lu M H, Weng H et al. 2021 Nat. Commun. 12 6437
[37] Peng Z Y, Lang Y, Zhu Y L, Zhao J, Zhang D W, Zhao Z X, and Yuan J M 2023 Chin. Phys. Lett. 40 054203
[38] Lang Y, Peng Z Y, and Zhao Z X 2022 Chin. Phys. Lett. 39 114201
[39] Jia L, Zhang Z, Yang D Z, Liu Y, Si M S, Zhang G P, and Liu Y S 2020 Phys. Rev. B 101 144304
[40] Qiao Y, Chen J, Huo Y, Liang H, Yu R, Chen J, Liu W, Jiang S, and Yang Y 2023 Phys. Rev. A 107 023523
[41] Yu C, Zhang X, Jiang S, Cao X, Yuan G, Wu T, Bai L, and Lu R 2016 Phys. Rev. A 94 013846
[42] Jiang S C, Yu C, Chen J G, Huang Y W, Lu R F, and Lin C D 2020 Phys. Rev. B 102 155201
[43] Zhao J, Liu J, Wang X, Yuan J, and Zhao Z 2022 Chin. Phys. Lett. 39 123201
[44] Peng Q F, Peng Z Y, Lang Y, Zhu Y L, Zhang D W, Lü Z, and Zhao Z 2022 Chin. Phys. Lett. 39 053301
[45] Wang S, Guo J, He X, Liang Y, Xie B, Zhong S, Teng H, and Wei Z 2023 Chin. Phys. B 32 063301
[46] Shao J, Zhang C P, Jia J C, Ma J L, and Miao X Y 2019 Chin. Phys. Lett. 36 054203
[47] Zhao Y T, Xu X Q, Jiang S C, Zhao X, Chen J G, and Yang Y J 2020 Phys. Rev. A 101 033413
[48] Zhao Y T, Jiang S C, Zhao X, Chen J G, and Yang Y J 2020 Opt. Lett. 45 2874
[49] Liu H, Li Y, You Y S, Ghimire S, Heinz T F, and Reis D A 2017 Nat. Phys. 13 262
[50] Yoshikawa N, Tamaya T, and Tanaka K 2017 Science 356 736
[51] You Y S, Reis D A, and Ghimire S 2017 Nat. Phys. 13 345
[52] Tancogne-Dejean N, Mücke O, Kartner F, and Rubio A 2017 Nat. Commun. 8 745
[53] Zhang X, Li J, Zhou Z, Yue S, Du H, Fu L, and Luo H G 2019 Phys. Rev. B 99 014304
[54] Feng Y K, Shi S X, Li J B, Ren Y J, Zhang X, Chen J H, and Du H C 2021 Phys. Rev. A 104 043525
[55] Song X H, Yang S D, Zuo R X, Meier T, and Yang W F 2020 Phys. Rev. A 101 033410
[56] Tang D and Bian X B 2021 Phys. Rev. B 104 104302
[57] Chen Z Y and Qin R 2019 Opt. Express 27 3761
[58] Saito N, Xia P, Lu F, Kanai T, Itatani J, and Ishii N 2017 Optica 4 1333
[59] Klemke N, Mücke O D, Rubio A, Kärtner A F X, and Tancogne-Dejean N 2020 Phys. Rev. B 102 104308
[60] He Y L, Guo J, Gao F Y, and Liu X S 2022 Phys. Rev. B 105 024305
[61] Heinrich T, Taucer M, Kfir O, Corkum P, Staudte A, Ropers C, and Sivis M 2021 Nat. Commun. 12 3723
[62] Qiao Y, Wu D, Chen J G, Wang J, Guo F M, and Yang Y J 2019 Phys. Rev. A 100 063428
[63] Hu Z J, Xie X C, Yang Z H, Wang Y H, and Jiang S C 2023 Symmetry 15 1427
[64] Qian C, Yu C, Jiang S, Zhang T, Gao J, Shi S, Pi H, Weng H, and Lu R 2022 Phys. Rev. X 12 021030
[65] Neufeld O, Podolsky D, and Cohen O 2019 Nat. Commun. 10 405
[66] Qian C, Jiang S, Wu T, Weng H, Yu C, and Lu R 2023 arXiv:2304.10109 [physics.optics]
[67] Yu R X, Qiao Y, Li P, Wang J, Chen J G, Feng W, Guo F M, and Yang Y J 2023 Chin. Phys. B 32 063302
[68] Odžak S and Milošević D B 2015 Phys. Rev. A 92 053416
[69] Zhang X, Zhu X, Liu X, Wang D, Zhang Q, Lan P, and Lu P 2017 Opt. Lett. 42 1027
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, and Zengxiu Zhao. Twin-Capture Rydberg State Excitation Enhanced with Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2024, 41(1): 014205
[2] Cai-Ping Zhang and Xiang-Yang Miao. Modifying the Electron Dynamics in High-Order Harmonic Generation via a Two-Color Laser Field[J]. Chin. Phys. Lett., 2023, 40(12): 014205
[3] Kai Hu, Yujie Qin, Liang Cheng, Youguo Shi, and Jingbo Qi. Giant Nonlinear Optical Response in Topological Semimetal Molybdenum Phosphide[J]. Chin. Phys. Lett., 2023, 40(11): 014205
[4] Shi-Qi Hu and Sheng Meng. Ultrafast Condensed Matter Physics at Attoseconds[J]. Chin. Phys. Lett., 2023, 40(11): 014205
[5] Zhaoyang Peng, Huayu Hu, Zengxiu Zhao, and Jianmin Yuan. Quantum Optical Description of Radiation by a Two-Level System in Strong Laser Fields[J]. Chin. Phys. Lett., 2023, 40(5): 014205
[6] Zhaoyang Peng, Yue Lang, Yalei Zhu, Jing Zhao, Dongwen Zhang, Zengxiu Zhao, and Jianmin Yuan. Crystal-Momentum-Resolved Contributions to Harmonics in Laser-Driven Graphene[J]. Chin. Phys. Lett., 2023, 40(5): 014205
[7] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 014205
[8] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 014205
[9] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 014205
[10] Xiaoli Guo, Cheng Jin, Ziqiang He, Song-Feng Zhao, Xiao-Xin Zhou, and Ya Cheng. Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules[J]. Chin. Phys. Lett., 2021, 38(12): 014205
[11] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 014205
[12] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 014205
[13] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 014205
[14] Jing-Jie Hao, Wei Tu, Nan Zong, Yu Shen, Shen-Jin Zhang, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser[J]. Chin. Phys. Lett., 2020, 37(4): 014205
[15] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 014205
Viewed
Full text


Abstract