Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 014301    DOI: 10.1088/0256-307X/41/1/014301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Acoustic Bilayer Gradient Metasurfaces for Perfect and Asymmetric Beam Splitting
Jiaqi Quan1, Baoyin Sun1, Yangyang Fu2*, Lei Gao1,3, and Yadong Xu1*
1Institute of Theoretical and Applied Physics, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
2College of Physics, Nanjing University of Aeronautics and Astronautics & Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
3School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China
Cite this article:   
Jiaqi Quan, Baoyin Sun, Yangyang Fu et al  2024 Chin. Phys. Lett. 41 014301
Download: PDF(8285KB)   PDF(mobile)(9782KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation, producing an extremely asymmetric splitting effect by simply tailoring the interlayer size. This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces. Ensured by different diffraction routes in momentum space for incident beams from opposite directions, extremely asymmetric acoustic beam splitting can be generated in a robust way, as demonstrated in experiments through a designed bilayer system. Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation.
Received: 01 November 2023      Published: 07 January 2024
PACS:  43.25.Cb (Macrosonic propagation, finite amplitude sound; shock waves)  
  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/014301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/014301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiaqi Quan
Baoyin Sun
Yangyang Fu
Lei Gao
and Yadong Xu
[1] Wu K, Liu J J, Ding Y, Wang W, Liang B, and Cheng J C 2022 Nat. Commun. 13 5171
[2] Bourdeau R W, Lee-Gosselin A, Lakshmanan A, Farhadi A, Kumar S R, Nety S P, and Shapiro M G 2018 Nature 553 86
[3] Sun S L, He Q, Hao J M, Xiao S Y, and Zhou L 2019 Adv. Opt. Photonics 11 380
[4] Yu N F and Capasso F 2014 Nat. Mater. 13 139
[5] Xu Y D, Fu Y Y, and Chen H Y 2016 Nat. Rev. Mater. 1 16067
[6] Assouar B, Liang B, Wu Y, Li Y, Cheng J C, and Jing Y 2018 Nat. Rev. Mater. 3 460
[7] Dong E Q, Cao P Z, Zhang J H, Zhang S, Fang N X, and Zhang Y 2023 Natl. Sci. Rev. 10 nwac246
[8] Chen A L, Wang Y S, Wang Y F, Zhou H T, and Yuan S M 2022 Appl. Mech. Rev. 74 020801
[9] Li Y, Qi S, and Assouar M B 2016 New J. Phys. 18 043024
[10] Ma F Y, Zhang H, Du P Y, Wang C, and Wu J H 2022 Appl. Phys. Lett. 120 121701
[11] Zhang H K, Zhang W X, Liao Y H, Zhou X M, Li J F, Hu G K, and Zhang X D 2020 Nat. Commun. 11 3956
[12] Liang S J, Liu T, Gao H, Gu Z M, An S W, and Zhu J 2020 Phys. Rev. Res. 2 043362
[13] Su G Y and Liu Y Q 2020 Appl. Phys. Lett. 117 221901
[14] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, and Gaburro Z 2011 Science 334 333
[15] Quan J Q, Gao L, Jiang J H, and Xu Y D 2023 J. Appl. Phys. 133 074504
[16] Wang X, Fang X H, Mao D X, Jing Y, and Li Y 2019 Phys. Rev. Lett. 123 214302
[17] Cao W K, Wu L T, Zhang C, Ke J C, Cheng Q, Cui T J, and Jing Y 2019 Sci. Bull. 64 808
[18] Fu Y Y, Cao Y Y, and Xu Y D 2019 Appl. Phys. Lett. 114 053502
[19] Song G Y, Cheng Q, Cui T J, and Jing Y 2018 Phys. Rev. Mater. 2 065201
[20] Zhu Y F, Hu J, Fan X, Yang J, Liang B, Zhu X F, and Cheng J C 2018 Nat. Commun. 9 1632
[21] Fu Y Y, Tian Y, Li X, Yang S L, Liu Y W, Xu Y, and Lu M H 2022 Phys. Rev. Lett. 128 104501
[22] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2020 Nature 583 215
[23] Andrei E Y and MacDonald A H 2020 Nat. Mater. 19 1265
[24] Park J M, Cao Y, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Nature 590 249
[25] Du L J, Molas M R, Huang Z H, Zhang G Y, Wang F, and Sun Z P 2023 Science 379 eadg0014
[26] Chen S Q, Zhang Y B, Li Z, Cheng H, and Tian J G 2019 Adv. Opt. Mater. 7 1801477
[27] Arbabi A, Arbabi E, Horie Y, Kamali S M, and Faraon A 2017 Nat. Photonics 11 415
[28] Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, and Faraon A 2016 Nat. Commun. 7 13682
[29] Mao X R, Shao Z K, Luan H Y, Wang S L, and Ma R M 2021 Nat. Nanotechnol. 16 1099
[30] Huang L, Zhang W, and Zhang X 2022 Phys. Rev. Lett. 128 253901
[31] Bao Y J, Nan F, Yan J B, Yang X G, Qiu C W, and Li B J 2022 Nat. Commun. 13 7550
[32] Liu B Y and Jiang Y Y 2018 Appl. Phys. Lett. 112 173503
[33] Deng L G, Li Z L, Guan Z Q, Tao J, Li G F, Zhu X L, Dai Q, Fu R, Zhou Z, Yang Y, Yu S H, and Zheng G X 2023 Adv. Opt. Mater. 11 2203095
[34] Fu Y Y, Shen C, Zhu X H, Li J F, Liu Y W, Cummer S A, and Xu Y D 2020 Sci. Adv. 6 eaba9876
[35] Fu Y Y, Shen C, Cao Y Y, Gao L, Chen H Y, Chan C T, Cummer S A, and Xu Y D 2019 Nat. Commun. 10 2326
[36] Cao Y Y, Fu Y Y, Gao L, Chen H Y, and Xu Y D 2023 Phys. Rev. A 107 013509
[37] Cao Y Y, Fu Y Y, Jiang J H, Gao L, and Xu Y D 2021 ACS Photonics 8 2027
[38] Xie Y T, Quan J Q, Shi Q S, Cao Y Y, Sun B Y, and Xu Y D 2022 Opt. Express 30 4125
[39] Zhu S, Quan J Q, Fu Y Y, Chen H Y, Gao L, and Xu Y D 2022 Opt. Express 30 29246
[40] Shi Q, Jin X, Fu Y, Wu Q, Huang C, Sun B, Gao L, and Xu Y 2021 Chin. Opt. Lett. 19 042602
[41] Zhu S, Cao Y Y, Fu Y Y, Li X C, Gao L, Chen H Y, and Xu Y D 2020 Opt. Lett. 45 3989
[42] Cao Y Y, Fu Y Y, Zhou Q J, Ou X, Gao L, Chen H Y, and Xu Y D 2019 Phys. Rev. Appl. 12 024006
[43] Liu T, Ma G C, Liang S J, Gao H, Gu Z M, An S W, and Zhu J 2020 Phys. Rev. B 102 014306
[44] Fleury R, Sounas D L, Sieck C F, Haberman M R, and Alù A 2014 Science 343 516
Related articles from Frontiers Journals
[1] Ming-Xi Deng. An Experimental Approach for Detection of the Acoustic Radiation Induced Static Component in Solids[J]. Chin. Phys. Lett., 2020, 37(7): 014301
[2] DENG Ming-Xi, XIANG Yan-Xun, WANG Ping, LV Xia-Fu. Second-Harmonic Generation of a Plane Wave Normally Incident upon a Solid Plate Immersed in Liquid[J]. Chin. Phys. Lett., 2013, 30(12): 014301
[3] LU Ming-Zhu, LIU Xue-Jin, SHI Yu, KANG Yan-Ni, GUAN Yu-Bo, WAN Ming-Xi**. Propagation of Shear Waves Generated by Acoustic Radiation Force in Nondissipative Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(1): 014301
[4] DING De-Sheng, ZHANG Yu. A Simple Calculation Approach for the Second-Harmonic Sound Beam Generated by an Arbitrary Distribution Source[J]. Chin. Phys. Lett., 2004, 21(3): 014301
[5] DING De-Sheng, XU Jian-Yi, WANG Yao-Jun. Second-Harmonic Generation of Bessel Beams in Lossy Media [J]. Chin. Phys. Lett., 2002, 19(5): 014301
[6] XIA Rong-Min, SHOU Wen-De, CHEN Guo-Ping, WANG Hong-Zhang. Focusing Ultrasonic Field of Holed Cap Spherical Shell Transducer Using the Spheroidal Beam Equation[J]. Chin. Phys. Lett., 2002, 19(3): 014301
Viewed
Full text


Abstract