Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 014204    DOI: 10.1088/0256-307X/41/1/014204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Wave Mixing of Dipole Solitons in One-Dimensional Quasi-Phase-Matched Nonlinear Crystals
Yuxin Guo1, Xiaoxi Xu1, Zhaopin Chen2, Yangui Zhou1,3, Bin Liu1,3, Hexiang He1,3*, Yongyao Li1,3, and Jianing Xie1,3*
1School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
2Physics Department and Solid-State Institute, Technion, Haifa 32000, Israel
3Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
Cite this article:   
Yuxin Guo, Xiaoxi Xu, Zhaopin Chen et al  2024 Chin. Phys. Lett. 41 014204
Download: PDF(5272KB)   PDF(mobile)(5292KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A quasi-phase-matched technique is introduced for soliton transmission in a quadratic $[\chi^{(2)}]$ nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing. We report four types of solitons as dipole solitons with distances between their bimodal peaks that can be laid out in different stripes. We study three cases of these solitons: spaced three stripes apart, one stripe apart, and confined to the same stripe. For the case of three stripes apart, all four types have stable results, but for the case of one stripe apart, stable solutions can only be found at $\omega_{1}=\omega_{2}$, and for the condition of dipole solitons confined to one stripe, stable solutions exist only for Type1 and Type3 at $\omega_{1}=\omega_{2}$. The stability of the soliton solution is solved and verified using the imaginary time propagation method and real-time transfer propagation, and soliton solutions are shown to exist in the multistability case. In addition, the relations of the transportation characteristics of the dipole soliton and the modulation parameters are numerically investigated. Finally, possible approaches for the experimental realization of the solitons are outlined.
Received: 14 November 2023      Published: 24 January 2024
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.70.Mp (Nonlinear optical crystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/014204       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/014204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuxin Guo
Xiaoxi Xu
Zhaopin Chen
Yangui Zhou
Bin Liu
Hexiang He
Yongyao Li
and Jianing Xie
[1] Lysenko A, Serozhko A, and Rybalko O 2017 Chin. Phys. Lett. 34 075202
[2] Zhao Y, Lei Y B, Xu Y X, Xu S L, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202
[3] Yakimansky A V, Nosova G I, Solovskaya N A, Smirnov N N, Plekhanov A I, and Gorkovenko A I 2011 Chem. Phys. Lett. 510 237
[4] Coe B J, Harris J A, Asselberghs I, Clays K, Olbrechts G, Persoons A, Hupp J T, Johnson R C, Coles S J, and Nakatani K 2002 Adv. Funct. Mater. 12 110
[5] Rotstein H G 2015 J. Comput. Neurosci. 38 325
[6] Xue T, Yu J, Yang T X, and Li S C 2002 Acta Phys. Sin. 51 1521 (in Chinese)
[7] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[8] Zhou Q, Zhong Y, Triki H, Sun Y, Liu W, and Biswas A 2022 Chin. Phys. Lett. 39 044202
[9] Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[10] Buryak A V and Kivshar Y S 1995 Phys. Lett. A 197 407
[11] Shadrivov I V, Zharov A A, and Kivshar Y S 2006 J. Opt. Soc. Am. B 23 529
[12] Ming Y, Zhou S H, and Feng G Y 2012 Acta Phys. Sin. 61 234206 (in Chinese)
[13] Sibbers F, Imbrock J, and Denz C 2010 Proc. SPIE 7728 77280Y
[14] Ricciardi I, Mosca S, Parisi M, Maddaloni P, Santamaria L, and De Rosa M 2015 Phys. Rev. A 91 063839
[15] Xiang T, Sun Q C, Li Y H, and Chen X 2018 Phys. Rev. A 97 063810
[16] Dolev I, Kaminer I, Shapira A, and Arie A 2012 Phys. Rev. Lett. 108 113903
[17] Qiu P, Wang K, Zhu H Y, and Qian L J 2010 Chin. Phys. Lett. 27 034204
[18] Yanagimoto R, Nehra R, Hamerly R, Ng E, and Mabuchi H 2023 PRX Quantum 4 010333
[19] Zhang B G, Yao J Q, Lu Y, Xu D G, Ji F, Zhang T L, Zhao X, Wang P, and Xu K X 2005 Chin. Phys. Lett. 22 1691
[20] Yang H, Qian L J, Fu X Q, Luo H, Yuan P, and Zhu H Y 2007 Chin. Phys. Lett. 24 1945
[21] Bloch N V, Shemer K, Shapira A, Shiloh R, Juwiler I, and Arie A 2012 Phys. Rev. Lett. 108 233902
[22] Shapira A, Shiloh R, and Arie A 2012 Opt. Lett. 37 2136
[23] Karnieli A and Arie A 2018 Opt. Express 26 4920
[24] Sankar R, Muralidharan R, Rahgavan C M, and Jayavel R 2008 Mater. Lett. 62 133
[25] Maccaferri N, Zilli A, Isoniemi T, Ghirardini L, Iarossi M, Finazzi M, and De Angelis F 2021 ACS Photonics 8 512
[26] Srinivasan P, Gunasekaran M, Kanagasekaran T, and Ramasamy P 2006 J. Cryst. Growth 289 639
[27] Chen Y H and He G Q 2023 Chin. Phys. B 32 090306
[28] Zhang S G, Yao J H, Shi Q, Liu Y G, Li Y N, Guo W G, and Lv F Y 2008 Chin. Phys. Lett. 25 2873
[29] Zhang X B, Yao B Q, and Wang Y Z 2007 Chin. Phys. Lett. 24 1953
[30] Ni P G, Ma B Q, Cheng B Y, and Zhang D Z 2003 Acta Phys. Sin. 52 1925 (in Chinese)
[31] Lv Z G and Teng H 2021 Chin. Phys. B 30 044209
[32] Liu G H, Zhang X L, Zhang X, Hu Y W, Li Z, Chen Z Q, and Fu S H 2023 Light: Sci. & Appl. 12 205
[33] Zhu J and Huang G X 2023 Chin. Phys. Lett. 40 100504
[34] Ma W X 2022 Chin. Phys. Lett. 39 100201
[35] Zhang F and Yin L 2022 Chin. Phys. Lett. 39 060301
[36] He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301
[37] Wang J L, Wen W, Lin J, and Li H J 2023 Chin. Phys. Lett. 40 070302
[38] Ding C, Zhou Q, Xu S, Triki H, Mirzazadeh M, and Liu W 2023 Chin. Phys. Lett. 40 040501
[39] Liu X M, Zhang Z Y, and Liu W J 2023 Chin. Phys. Lett. 40 070501
[40] Zhang Y L, Jia C Y, and Liang Z X 2022 Chin. Phys. Lett. 39 020501
[41] Yao Y, Yi H, Zhang X, and Ma G 2023 Chin. Phys. Lett. 40 100503
[42] Etrich C, Lederer F, Malomed B A, and Peschel U 2000 Prog. Opt. 41 483
[43] Zakharov V E and Wabnitz S Z (eds) 1998 Optical Solitons: Theoretical Challenges and Industrial Perspectives (Berlin: Springer)
[44] Lin J, Cheng X P, and Ye L J 2006 Chin. Phys. Lett. 23 147
[45] Zhang X, Yi H H, Yao Y L, Wang S B, and Shi L X 2023 Chin. Phys. Lett. 40 124204
[46] Yang J K and Musslimani Z H 2003 Opt. Lett. 28 2094
[47] Ablowitz M J, Antar N, and Ilan B 2010 Phys. Rev. A 81 033834
[48] Yang J K, Makasyuk I, and Chen Z G 2004 Opt. Lett. 29 1662
[49] Yang J K, Makasyuk I, and Chen Z G 2004 Stud. Appl. Math. 113 389
[50] Su H, Guo Y X, and He H X 2023 Phys. Lett. A 478 128909
[51] Lv J F and Wang X Y 2022 Chin. J. Lasers 49 43
[52] Fejer M M, Magel G A, and Byer R L 1992 IEEE J. Quantum Electron. 28 2631
[53] Zhao F F, Xu X X, He H X, Zhang L, Zhou Y G, Chen Z P, and Li Y Y 2023 Phys. Rev. Lett. 130 157203
[54] Bahabad A and Kapteyn H C 2010 Nat. Photonics 4 570
[55] Mizuuchi K, Yamamoto K, and Sato H 1994 IEEE J. Quantum Electron. 30 1596
[56] Zhai Y Y, Fan B, Yang S F, Zhang Y, Zhou X J, and Chen X Z 2013 Chin. Phys. Lett. 30 044209
[57] Zhang D F, Wang K, and Zhu H Y 2008 Chin. Phys. Lett. 25 3685
[58] Picinin A, Lente M H, and Rino J P 2004 Phys. Rev. B 69 064117
[59] Arie A and Voloch N 2010 Laser & Photonics Rev. 4 355
[60] Wang Z, Qiao Y Q, Yan S, Wu H Y, and Chen X F 2018 Opt. Lett. 43 3734
[61] Tian L H and Chen X F 2011 Opt. Express 19 11591
[62] Liu S, Wang L, Mazur L M, Switkowski K, Wang B X, Chen F, Arie A, and Sheng Y 2023 Adv. Opt. Mater. 11 2300021
[63] Zhu S N and Ming N B 1997 Science 278 843
[64] Bowden C M and Zheltikov A M 2002 J. Opt. Soc. Am. B 19 2046
[65]Skorobogatiy M 2009 Fundamentals of Photonic Crystal Guiding (Cambridge: Cambridge University Press)
[66] Bahabad A and Arie A 2008 Opt. Lett. 33 1386
[67] Berger V 1998 Phys. Rev. Lett. 81 4136
[68] Chen Y L, Yuan J W, Yan W G, Zhou B B, and Guo J 2005 Acta Phys. Sin. 54 2079 (in Chinese)
[69] Lv C H and Li D W 2015 Chin. Phys. B 24 020301
[70] Stolen R H and Ashkin A 1974 Appl. Phys. Lett. 24 308
[71] Zorin A B 2021 Appl. Phys. Lett. 118 222601
[72] Liu X M and Li Y H 2001 Opt. Express 9 631
[73] Zhou B B, Liu X, Guo H R, Zeng X L, Chen X F, Chung H P, and Bache M 2017 Phys. Rev. Lett. 118 143901
[74] Ye F W and Torner L 2008 Phys. Rev. A 77 043821
[75] Skupin S, Bang O, and Krolikowski W 2006 Phys. Rev. E 73 066603
[76] Krupa K, Nithyanandan K, Andral U, and Grelu P 2017 Phys. Rev. Lett. 118 243901
[77] Fleischer J W, Carmon T, Segev M, and Christodoulides D N 2003 Phys. Rev. Lett. 90 023902
[78] Suchowski H and Arie A 2014 Laser & Photonics Rev. 8 333
[79] Karnieli A and Arie A 2022 Front. Phys. 17 12301
[80] Li Y Y, Yesharim O, Hurvitz I, Karnieli A, Fu S H, and Arie A 2020 Phys. Rev. A 101 033807
[81] Zhao F Y, Lv J T, He H X, Zhou Y G, and Li Y Y 2021 Opt. Express 29 21820
[82] Yang W X, Hou J M, and Lee R K 2009 Phys. Rev. A 79 033825
[83] Lucas E, Guo H R, Jost J D, and Kippenberg T J 2017 Phys. Rev. A 95 043822
[84] Ma W X 2009 Nonlinear Anal.: Theory Methods & Appl. 71 e1716
[85] Aslan E C 2019 Optik 196 162661
[86] Porat G and Arie A 2013 J. Opt. Soc. Am. B 30 1342
[87] Luther G G, Alber M S, and Robbins J M 2000 J. Opt. Soc. Am. B 17 932
[88] Adami R, Cacciapuoti C, and Noja D 2011 Rev. Math. Phys. 23 409
[89] Xu X X, Zhao F Y, Huang J Y, He H X, Zhang L, Chen Z P, Nie Z Q, and Li Y Y 2023 Opt. Express 31 38343
Related articles from Frontiers Journals
[1] Hui-ran Yang, Meng-ting Qi, Xu-peng Li, Ze Xue, Chen-hao Lu, Jia-wei Cheng, Dong-dong Han, and Lu Li. Optical Nonlinearity of Violet Phosphorus and Applications in Fiber Lasers[J]. Chin. Phys. Lett., 2024, 41(1): 014204
[2] Kai Hu, Yujie Qin, Liang Cheng, Youguo Shi, and Jingbo Qi. Giant Nonlinear Optical Response in Topological Semimetal Molybdenum Phosphide[J]. Chin. Phys. Lett., 2023, 40(11): 014204
[3] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 014204
[4] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 014204
[5] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 014204
[6] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 014204
[7] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 014204
[8] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 014204
[9] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 014204
[10] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 014204
[11] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 014204
[12] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 014204
[13] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 014204
[14] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 014204
[15] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 014204
Viewed
Full text


Abstract