FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Three-Wave Mixing of Dipole Solitons in One-Dimensional Quasi-Phase-Matched Nonlinear Crystals |
Yuxin Guo1, Xiaoxi Xu1, Zhaopin Chen2, Yangui Zhou1,3, Bin Liu1,3, Hexiang He1,3*, Yongyao Li1,3, and Jianing Xie1,3* |
1School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China 2Physics Department and Solid-State Institute, Technion, Haifa 32000, Israel 3Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
|
|
Cite this article: |
Yuxin Guo, Xiaoxi Xu, Zhaopin Chen et al 2024 Chin. Phys. Lett. 41 014204 |
|
|
Abstract A quasi-phase-matched technique is introduced for soliton transmission in a quadratic $[\chi^{(2)}]$ nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing. We report four types of solitons as dipole solitons with distances between their bimodal peaks that can be laid out in different stripes. We study three cases of these solitons: spaced three stripes apart, one stripe apart, and confined to the same stripe. For the case of three stripes apart, all four types have stable results, but for the case of one stripe apart, stable solutions can only be found at $\omega_{1}=\omega_{2}$, and for the condition of dipole solitons confined to one stripe, stable solutions exist only for Type1 and Type3 at $\omega_{1}=\omega_{2}$. The stability of the soliton solution is solved and verified using the imaginary time propagation method and real-time transfer propagation, and soliton solutions are shown to exist in the multistability case. In addition, the relations of the transportation characteristics of the dipole soliton and the modulation parameters are numerically investigated. Finally, possible approaches for the experimental realization of the solitons are outlined.
|
|
Received: 14 November 2023
Published: 24 January 2024
|
|
PACS: |
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.70.Mp
|
(Nonlinear optical crystals)
|
|
|
|
|
[1] | Lysenko A, Serozhko A, and Rybalko O 2017 Chin. Phys. Lett. 34 075202 |
[2] | Zhao Y, Lei Y B, Xu Y X, Xu S L, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202 |
[3] | Yakimansky A V, Nosova G I, Solovskaya N A, Smirnov N N, Plekhanov A I, and Gorkovenko A I 2011 Chem. Phys. Lett. 510 237 |
[4] | Coe B J, Harris J A, Asselberghs I, Clays K, Olbrechts G, Persoons A, Hupp J T, Johnson R C, Coles S J, and Nakatani K 2002 Adv. Funct. Mater. 12 110 |
[5] | Rotstein H G 2015 J. Comput. Neurosci. 38 325 |
[6] | Xue T, Yu J, Yang T X, and Li S C 2002 Acta Phys. Sin. 51 1521 (in Chinese) |
[7] | Zhou Q 2022 Chin. Phys. Lett. 39 010501 |
[8] | Zhou Q, Zhong Y, Triki H, Sun Y, Liu W, and Biswas A 2022 Chin. Phys. Lett. 39 044202 |
[9] | Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202 |
[10] | Buryak A V and Kivshar Y S 1995 Phys. Lett. A 197 407 |
[11] | Shadrivov I V, Zharov A A, and Kivshar Y S 2006 J. Opt. Soc. Am. B 23 529 |
[12] | Ming Y, Zhou S H, and Feng G Y 2012 Acta Phys. Sin. 61 234206 (in Chinese) |
[13] | Sibbers F, Imbrock J, and Denz C 2010 Proc. SPIE 7728 77280Y |
[14] | Ricciardi I, Mosca S, Parisi M, Maddaloni P, Santamaria L, and De Rosa M 2015 Phys. Rev. A 91 063839 |
[15] | Xiang T, Sun Q C, Li Y H, and Chen X 2018 Phys. Rev. A 97 063810 |
[16] | Dolev I, Kaminer I, Shapira A, and Arie A 2012 Phys. Rev. Lett. 108 113903 |
[17] | Qiu P, Wang K, Zhu H Y, and Qian L J 2010 Chin. Phys. Lett. 27 034204 |
[18] | Yanagimoto R, Nehra R, Hamerly R, Ng E, and Mabuchi H 2023 PRX Quantum 4 010333 |
[19] | Zhang B G, Yao J Q, Lu Y, Xu D G, Ji F, Zhang T L, Zhao X, Wang P, and Xu K X 2005 Chin. Phys. Lett. 22 1691 |
[20] | Yang H, Qian L J, Fu X Q, Luo H, Yuan P, and Zhu H Y 2007 Chin. Phys. Lett. 24 1945 |
[21] | Bloch N V, Shemer K, Shapira A, Shiloh R, Juwiler I, and Arie A 2012 Phys. Rev. Lett. 108 233902 |
[22] | Shapira A, Shiloh R, and Arie A 2012 Opt. Lett. 37 2136 |
[23] | Karnieli A and Arie A 2018 Opt. Express 26 4920 |
[24] | Sankar R, Muralidharan R, Rahgavan C M, and Jayavel R 2008 Mater. Lett. 62 133 |
[25] | Maccaferri N, Zilli A, Isoniemi T, Ghirardini L, Iarossi M, Finazzi M, and De Angelis F 2021 ACS Photonics 8 512 |
[26] | Srinivasan P, Gunasekaran M, Kanagasekaran T, and Ramasamy P 2006 J. Cryst. Growth 289 639 |
[27] | Chen Y H and He G Q 2023 Chin. Phys. B 32 090306 |
[28] | Zhang S G, Yao J H, Shi Q, Liu Y G, Li Y N, Guo W G, and Lv F Y 2008 Chin. Phys. Lett. 25 2873 |
[29] | Zhang X B, Yao B Q, and Wang Y Z 2007 Chin. Phys. Lett. 24 1953 |
[30] | Ni P G, Ma B Q, Cheng B Y, and Zhang D Z 2003 Acta Phys. Sin. 52 1925 (in Chinese) |
[31] | Lv Z G and Teng H 2021 Chin. Phys. B 30 044209 |
[32] | Liu G H, Zhang X L, Zhang X, Hu Y W, Li Z, Chen Z Q, and Fu S H 2023 Light: Sci. & Appl. 12 205 |
[33] | Zhu J and Huang G X 2023 Chin. Phys. Lett. 40 100504 |
[34] | Ma W X 2022 Chin. Phys. Lett. 39 100201 |
[35] | Zhang F and Yin L 2022 Chin. Phys. Lett. 39 060301 |
[36] | He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301 |
[37] | Wang J L, Wen W, Lin J, and Li H J 2023 Chin. Phys. Lett. 40 070302 |
[38] | Ding C, Zhou Q, Xu S, Triki H, Mirzazadeh M, and Liu W 2023 Chin. Phys. Lett. 40 040501 |
[39] | Liu X M, Zhang Z Y, and Liu W J 2023 Chin. Phys. Lett. 40 070501 |
[40] | Zhang Y L, Jia C Y, and Liang Z X 2022 Chin. Phys. Lett. 39 020501 |
[41] | Yao Y, Yi H, Zhang X, and Ma G 2023 Chin. Phys. Lett. 40 100503 |
[42] | Etrich C, Lederer F, Malomed B A, and Peschel U 2000 Prog. Opt. 41 483 |
[43] | Zakharov V E and Wabnitz S Z (eds) 1998 Optical Solitons: Theoretical Challenges and Industrial Perspectives (Berlin: Springer) |
[44] | Lin J, Cheng X P, and Ye L J 2006 Chin. Phys. Lett. 23 147 |
[45] | Zhang X, Yi H H, Yao Y L, Wang S B, and Shi L X 2023 Chin. Phys. Lett. 40 124204 |
[46] | Yang J K and Musslimani Z H 2003 Opt. Lett. 28 2094 |
[47] | Ablowitz M J, Antar N, and Ilan B 2010 Phys. Rev. A 81 033834 |
[48] | Yang J K, Makasyuk I, and Chen Z G 2004 Opt. Lett. 29 1662 |
[49] | Yang J K, Makasyuk I, and Chen Z G 2004 Stud. Appl. Math. 113 389 |
[50] | Su H, Guo Y X, and He H X 2023 Phys. Lett. A 478 128909 |
[51] | Lv J F and Wang X Y 2022 Chin. J. Lasers 49 43 |
[52] | Fejer M M, Magel G A, and Byer R L 1992 IEEE J. Quantum Electron. 28 2631 |
[53] | Zhao F F, Xu X X, He H X, Zhang L, Zhou Y G, Chen Z P, and Li Y Y 2023 Phys. Rev. Lett. 130 157203 |
[54] | Bahabad A and Kapteyn H C 2010 Nat. Photonics 4 570 |
[55] | Mizuuchi K, Yamamoto K, and Sato H 1994 IEEE J. Quantum Electron. 30 1596 |
[56] | Zhai Y Y, Fan B, Yang S F, Zhang Y, Zhou X J, and Chen X Z 2013 Chin. Phys. Lett. 30 044209 |
[57] | Zhang D F, Wang K, and Zhu H Y 2008 Chin. Phys. Lett. 25 3685 |
[58] | Picinin A, Lente M H, and Rino J P 2004 Phys. Rev. B 69 064117 |
[59] | Arie A and Voloch N 2010 Laser & Photonics Rev. 4 355 |
[60] | Wang Z, Qiao Y Q, Yan S, Wu H Y, and Chen X F 2018 Opt. Lett. 43 3734 |
[61] | Tian L H and Chen X F 2011 Opt. Express 19 11591 |
[62] | Liu S, Wang L, Mazur L M, Switkowski K, Wang B X, Chen F, Arie A, and Sheng Y 2023 Adv. Opt. Mater. 11 2300021 |
[63] | Zhu S N and Ming N B 1997 Science 278 843 |
[64] | Bowden C M and Zheltikov A M 2002 J. Opt. Soc. Am. B 19 2046 |
[65] | Skorobogatiy M 2009 Fundamentals of Photonic Crystal Guiding (Cambridge: Cambridge University Press) |
[66] | Bahabad A and Arie A 2008 Opt. Lett. 33 1386 |
[67] | Berger V 1998 Phys. Rev. Lett. 81 4136 |
[68] | Chen Y L, Yuan J W, Yan W G, Zhou B B, and Guo J 2005 Acta Phys. Sin. 54 2079 (in Chinese) |
[69] | Lv C H and Li D W 2015 Chin. Phys. B 24 020301 |
[70] | Stolen R H and Ashkin A 1974 Appl. Phys. Lett. 24 308 |
[71] | Zorin A B 2021 Appl. Phys. Lett. 118 222601 |
[72] | Liu X M and Li Y H 2001 Opt. Express 9 631 |
[73] | Zhou B B, Liu X, Guo H R, Zeng X L, Chen X F, Chung H P, and Bache M 2017 Phys. Rev. Lett. 118 143901 |
[74] | Ye F W and Torner L 2008 Phys. Rev. A 77 043821 |
[75] | Skupin S, Bang O, and Krolikowski W 2006 Phys. Rev. E 73 066603 |
[76] | Krupa K, Nithyanandan K, Andral U, and Grelu P 2017 Phys. Rev. Lett. 118 243901 |
[77] | Fleischer J W, Carmon T, Segev M, and Christodoulides D N 2003 Phys. Rev. Lett. 90 023902 |
[78] | Suchowski H and Arie A 2014 Laser & Photonics Rev. 8 333 |
[79] | Karnieli A and Arie A 2022 Front. Phys. 17 12301 |
[80] | Li Y Y, Yesharim O, Hurvitz I, Karnieli A, Fu S H, and Arie A 2020 Phys. Rev. A 101 033807 |
[81] | Zhao F Y, Lv J T, He H X, Zhou Y G, and Li Y Y 2021 Opt. Express 29 21820 |
[82] | Yang W X, Hou J M, and Lee R K 2009 Phys. Rev. A 79 033825 |
[83] | Lucas E, Guo H R, Jost J D, and Kippenberg T J 2017 Phys. Rev. A 95 043822 |
[84] | Ma W X 2009 Nonlinear Anal.: Theory Methods & Appl. 71 e1716 |
[85] | Aslan E C 2019 Optik 196 162661 |
[86] | Porat G and Arie A 2013 J. Opt. Soc. Am. B 30 1342 |
[87] | Luther G G, Alber M S, and Robbins J M 2000 J. Opt. Soc. Am. B 17 932 |
[88] | Adami R, Cacciapuoti C, and Noja D 2011 Rev. Math. Phys. 23 409 |
[89] | Xu X X, Zhao F Y, Huang J Y, He H X, Zhang L, Chen Z P, Nie Z Q, and Li Y Y 2023 Opt. Express 31 38343 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|