Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 087401    DOI: 10.1088/0256-307X/40/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Transformation of Hexagonal Lu to Cubic LuH$_{2+x}$ Single-Crystalline Films
Peiyi Li1,2†, Jiachang Bi2†, Shunda Zhang2, Rui Cai1,2, Guanhua Su2, Fugang Qi1,2, Ruyi Zhang2, Zhiyang Wei2,3, and Yanwei Cao2,3*
1School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
2Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Peiyi Li, Jiachang Bi, Shunda Zhang et al  2023 Chin. Phys. Lett. 40 087401
Download: PDF(7082KB)   PDF(mobile)(7091KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the recent report of near ambient superconductivity at room temperature in the N-doped lutetium hydride (Lu–H–N) system, the understanding of cubic Lu–H compounds has attracted worldwide attention. Generally, compared to polycrystals with non-negligible impurities, the single-crystalline form of materials with high purity can provide an opportunity to show their hidden properties. However, the experimental synthesis of single-crystalline cubic Lu–H compounds has not been reported so far. Here, we develop an easy way to synthesize highly pure LuH$_{2+x}$ single-crystalline films by the post-annealing of Lu single-crystalline films (purity of 99.99%) in H$_2$ atmosphere. The crystal and electronic structures of films were characterized by x-ray diffraction, Raman spectroscopy, and electrical transport. Interestingly, Lu films are silver-white and metallic, whereas their transformed LuH$_{2+x}$ films become purple-red and insulating, indicating the possible formation of an unreported electronic state of Lu–H compounds. Our work provides a novel route to synthesize and explore more single-crystalline Lu–H compounds.
Received: 16 April 2023      Published: 24 July 2023
PACS:  74.25.-q (Properties of superconductors)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  73.20.-r (Electron states at surfaces and interfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/087401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/087401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peiyi Li
Jiachang Bi
Shunda Zhang
Rui Cai
Guanhua Su
Fugang Qi
Ruyi Zhang
Zhiyang Wei
and Yanwei Cao
[1] Dasenbrock-Gammon N, Snider E, McBride R, Pasan H, Durkee D, Khalvashi-Sutter N, Munasinghe S, Dissanayake S E, Lawler K V, Salamat A, and Dias R P 2023 Nature 615 244
[2] Li Z W, He X, Zhang C L, Lu K, Bin B S, Zhang J, Zhang S J, Zhao J F, Shi L C, Peng Y, Feng S, Deng Z, Song J, Liu Q, Wang X, Yu R, Wang L, Li Y, Bass J, Prakapenka V, Chariton S, Liu H, and Jin C 2023 Sci. Chin. Phys. Mech. & Astron. 66 267411
[3] Liu M, Liu X, Li J, Liu J, Sun Y, Chen X Q, and Liu P 2023 arXiv:2303.06554v1 [cond-mat.mtrl-sci]
[4] Shan P F, Wang N N, Zheng X Q, Qiu Q Z, Peng Y Y, and Cheng J G 2023 Chin. Phys. Lett. 40 046101
[5] Ming X, Zhang Y J, Zhu X, Li Q, He C, Liu Y, Zheng B, Yang H, and Wen H H 2023 Nature (accepted)
[6] Zhang S D, Bi J C, Zhang R Y, Li P Y, Qi F G, Wei Z Y, and Cao Y W 2023 AIP Adv. 13 065117
[7] Xie F K, Lu T L, Yu Z, Wang Y X, Wang Z G, Meng S, and Liu M 2023 Chin. Phys. Lett. 40 057401
[8] Huo Z, Duan D, Ma T, Jiang Q, Zhang Z, Tian F, and Cui T 2023 arXiv:2303.12575v1 [cond-mat.supr-con]
[9]Sun Y, Zhang F, Wu S, Antropov V, and Ho K M 2023 arXiv:2303.14034v1 [cond-mat.supr-con]
[10]Hilleke K P, Wang X, Luo D, Geng N, Wang B, and Zurek E 2023 arXiv:2303.15622v1 [cond-mat.supr-con]
[11] Zhang Y J, Ming X, Li Q, Zhu X, Zheng B, Liu Y, He C, Yang H, and Wen H H 2023 Sci. Chin. Phys. Mech. & Astron. 66 287411
[12] Xing X, Wang C, Yu L, Xu J, Zhang C, Zhang M, Huang S, Zhang X, Yang B, Chen X, Zhang Y, Guo J, Shi Z, Ma Y, Chen C, and Liu X 2023 arXiv:2303.17587v2 [cond-mat.supr-con]
[13] Cai S, Guo J, Shu H, Yang L, Wang P, Zhou Y, Zhao J, Han J, Wu Q, Yang W, Xiang T, Mao H, and Sun L 2023 Matter Radiat. Extremes 8 048001
[14]Wang N, Hou J, Liu Z, Shan P, Chai C, Jin S, Wang X, Long Y, Liu Y, Zhang H, Dong X, and Cheng J 2023 arXiv:2304.00558v1 [cond-mat.supr-con]
[15] Zhao X, Shan P, Wang N, Li Y, Xu Y, and Cheng J 2023 Sci. Bull. 68 883
[16] Moulding O, Gallego-Parra S, Toulemonde P, Garbarino G, Derango P, Giroux P, and Méasson M 2023 arXiv:2304.04310v1 [cond-mat.supr-con]
[17] Ferreira P P, Conway L J, Cucciari A, Cataldo S, Giannessi F, Kogler E, Eleno L T F, Pickard C J, Heil C, and Boeri L 2023 arXiv:2304.04447v1 [cond-mat.supr-con]
[18] Lucrezi R, Ferreira P P, Aichhorn M, and Heil C 2023 arXiv:2304.06685v1 [cond-mat.supr-con]
[19] Lu T, Meng S, Liu M 2023 arXiv:2304.06726v1 [cond-mat.supr-con]
[20] Kim S W, Conway L J, Pickard C J, Pascut G L, and Monserrat B 2023 arXiv:2304.07326v1 [cond-mat.supr-con]
[21] Tao X, Yang A, Yang S, Quan Y, and Zhang P 2023 Sci. Bull. 68 1372
[22] Liu Z, Zhang Y, Huang S, Ming X, Li Q, Pan C, Dai Y, Zhou X, Zhu X, Yan H, and Wen H H 2023 arXiv:2305.06103v1 [cond-mat.supr-con]
[23] Dangić D, Garcia-Goiricelaya P, Fang Y W, Ibañez A J, and Errea I 2023 arXiv:2305.06751v1 [cond-mat.supr-con]
[24] Harshman D R and Fiory A T 2023 arXiv:2305.12065v1 [cond-mat.supr-con]
[25] Denchfield A, Park H, and Hemley R J 2023 arXiv:2305.18196v3 [cond-mat.supr-con]
[26] Pavlov N S, Shein I R, Pervakov K S, Pudalov V M, and Nekrasov I A 2023 arXiv:2306.09868v1 [cond-mat.supr-con]
[27] Gubler M, Krummenacher M, Finkler J A, and Goedecker S 2023 arXiv:2306.07746v1 [cond-mat.supr-con]
[28] Peng D, Zeng Q, Lan F, Xing Z, Ding Y, and Mao H 2023 arXiv:2307.00201v1 [cond-mat.supr-con]
[29] Song H, Zhang Z, Cui T, Pickard C J, Kresin V Z, and Duan D 2021 Chin. Phys. Lett. 38 107401
[30] Du M, Song H, Zhang Z, Duan D, and Cui T 2022 Research 2022 9784309
[31] Shao M Y, Chen S, Chen W H, Zhang K X, Huang X L, and Cui T 2021 Inorg. Chem. 60 15330
[32] Wang D, Ding Y, and Mao H K 2021 Materials 14 7563
[33] Bi J C, Zhang R Y, Peng S Q, Sun J, Wang X M, Chen W, Wu L, Gao J H, Cao H T, and Cao Y W 2021 Phys. Rev. Mater. 5 075201
[34] Zhang R Y, Li X Y, Bi J C, Zhang S D, Peng S D, Song Y, Zhang Q H, Gu L, Duan J X, and Cao Y W 2021 APL Mater. 9 061103
[35] Zhang R Y, Ma Q Y, Liu H G, Sun T Y, Bi J C, Song Y, Peng S Q, Liang L Y, Gao J H, Cao H T, Huang L F, and Cao Y W 2021 ACS Photon. 8 847
[36] Zhang R Y, Li X Y, Meng F Q, Bi J C, Zhang S D, Peng S Q, Sun J, Wang X M, Wu L, Duan J X, Cao H T, Zhang Q H, Gu L, Huang L F, and Cao Y W 2021 ACS Appl. Mater. & Interfaces 13 60182
[37] Chesnut G N and Vohra Y K 1998 Phys. Rev. B 57 10221
Related articles from Frontiers Journals
[1] Sheng Ma, Shanshan Yan, Jiali Liu, Yizhe Wang, Yuhang Zhang, Zhen Zhao, Zouyouwei Lu, Dong Li, Yue Liu, Jihu Lu, Hua Zhang, Haitao Yang, Fang Zhou, Zian, Li, Xiaoli Dong, and Zhongxian Zhao. Hydrothermally Obtaining Superconductor Single Crystal of FeSe$_{0.2}$Te$_{0.8}$ without Interstitial Fe[J]. Chin. Phys. Lett., 2023, 40(6): 087401
[2] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 087401
[3] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 087401
[4] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 087401
[5] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 087401
[6] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 087401
[7] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 087401
[8] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 087401
[9] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 087401
[10] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 087401
[11] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 087401
[12] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 087401
[13] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 087401
[14] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 087401
[15] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 087401
Viewed
Full text


Abstract