CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Coexistence of Unidirectional Charge Density Waves in LaTe$_{3}$ |
Guo-Yu Xian1,2†, Pei-Jie Jiang2,1†, Yu-Hui Li1,2†, Xing-Wei Shi2,1, Guang-Yuan Han1,2, Hai-Tao Yang1,2,3, Yu-Yang Zhang2,1*, Xiao Lin2,1*, and Hong-Jun Gao1,2,3 |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Guo-Yu Xian, Pei-Jie Jiang, Yu-Hui Li et al 2023 Chin. Phys. Lett. 40 087402 |
|
|
Abstract The classic rare-earth tritelluride provides an ideal platform to study the strong correlation state owing to its stable structures and abundance of orders. Here we report the observation of an undiscovered charge density wave (CDW) in LaTe$_{3}$ under 4.2 K, the transition temperature of the CDW states is fitted to be 35 K, and confirmed by the evanishment of this CDW at 77 K via using temperature-dependent scanning tunneling microscope/spectroscopy. The coexistence of these CDWs is confirmed by the atomic resolution and beating pattern simulation. It is the first time to observe the coexistence of unidirectional charge density waves system, providing a new platform to understand the competition and evolution between strong correlation states, and get a deeper sight into the phase lag between different order parameters.
|
|
Received: 30 May 2023
Published: 11 August 2023
|
|
PACS: |
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
74.25.Fy
|
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.62.-c
|
(Transition temperature variations, phase diagrams)
|
|
|
|
|
[1] | Ru N 2008 Charge Density Wave Formation in Rare Earth Tritelluride PhD Dissertation (Stanford University) |
[2] | Ru N, Borzi R A, Rost A, Mackenzie A P, Laverock J, Dugdale S B, and Fisher I R 2008 Phys. Rev. B 78 045123 |
[3] | Ru N and Fisher I R 2006 Phys. Rev. B 73 033101 |
[4] | Yang X, Xian J J, Li G, Nagaosa N, Zhang W H, Qin L, Zhang Z M, Lü J T, and Fu Y S 2020 Phys. Rev. X 10 031061 |
[5] | Feng H F, Xu Z F, Zhuang J C, Wang L, Liu Y N, Xu X, Song L, Hao W C, and Du Y 2019 Adv. Funct. Mater. 29 1900367 |
[6] | Brouet V, Yang W L, Zhou X J, Hussain Z, Moore R G, He R, Lu D H, Shen Z X, Laverock J, Dugdale S B, Ru N, and Fisher I R 2008 Phys. Rev. B 77 235104 |
[7] | DiMasi E, Aronson M C, Mansfield J F, Foran B, and Lee S 1995 Phys. Rev. B 52 14516 |
[8] | Lavagnini M, Baldini M, Sacchetti A, Di Castro D, Delley B, Monnier R, Chu J H, Ru N, Fisher I R, Postorino P, and Degiorgi L 2008 Phys. Rev. B 78 201101 |
[9] | Ru N, Condron C L, Margulis G Y, Shin K Y, Laverock J, Dugdale S B, Toney M F, and Fisher I R 2008 Phys. Rev. B 77 035114 |
[10] | Yao H, Robertson J A, Kim E A, and Kivelson S A 2006 Phys. Rev. B 74 245126 |
[11] | Banerjee A, Feng Y, Silevitch D M, Wang J, Lang J C, Kuo H H, Fisher I R, and Rosenbaum T F 2013 Phys. Rev. B 87 155131 |
[12] | Deguchi K, Okada T, Chen G F, Ban S, Aso N, and Sato N K 2009 J. Phys.: Conf. Ser. 150 042023 |
[13] | Hu B F, Cheng B, Yuan R H, Dong T, and Wang N L 2014 Phys. Rev. B 90 085105 |
[14] | Chillal S, Schierle E, Weschke E, Yokaichiya F, Hoffmann J U, Volkova O S, Vasiliev A N, Sinchenko A A, Lejay P, Hadj-Azzem A, Monceau P, and Lake B 2020 Phys. Rev. B 102 241110 |
[15] | Walmsley P, Aeschlimann S, Straquadine J A W, Giraldo-Gallo P, Riggs S C, Chan M K, McDonald R D, and Fisher I R 2020 Phys. Rev. B 102 045150 |
[16] | Sarkar S, Singh V K, Sadhukhan P, Pariari A, Roy S, Mandal P, and Barman S R 2020 AIP Conf. Proc. 2220 100005 |
[17] | Kogar A, Zong A, Dolgirev P E, Shen X, Straquadine J, Bie Y Q, Wang X, Rohwer T, Tung I C, Yang Y, Li R, Yang J, Weathersby S, Park S, Kozina M E, Sie E J, Wen H, Jarillo-Herrero P, Fisher I R, Wang X, and Gedik N 2020 Nat. Phys. 16 159 |
[18] | Wang Y P, Petrides I, McNamara G, Hosen M M, Lei S, Wu Y C, Hart J L, Lv H, Yan J, Xiao D, Cha J J, Narang P, Schoop L M, and Burch K S 2022 Nature 606 896 |
[19] | Pariari A, Koley S, Roy S, Singha R, Laad M S, Taraphder A, and Mandal P 2021 Phys. Rev. B 104 155147 |
[20] | Phillips P 2012 Advanced Solid State Physics (Cambridge: Cambridge University Press) |
[21] | Laverock J, Dugdale S B, Major Z, Alam M A, Ru N, Fisher I R, Santi G, and Bruno E 2005 Phys. Rev. B 71 085114 |
[22] | Malliakas C, Billinge S J, Kim H J, and Kanatzidis M G 2005 J. Am. Chem. Soc. 127 6510 |
[23] | Watanabe S 2013 Abstr. Appl. Anal. 2013 1 |
[24] | Julian C 2007 Introduction to Scanning Tunneling Microscopy (New York: Columbia University) |
[25] | Kikuchi A 1998 J. Phys. Soc. Jpn. 67 1308 |
[26] | Garcia D R, Gweon G H, Zhou S Y, Graf J, Jozwiak C M, Jung M H, Kwon Y S, and Lanzara A 2007 Phys. Rev. Lett. 98 166403 |
[27] | Kiselev E I, Scheurer M S, Wölfle P, and Schmalian J 2017 Phys. Rev. B 95 125122 |
[28] | Leggett A J 1965 Phys. Rev. 140 A1869 |
[29] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[30] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[31] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, and Dabo I 2009 J. Phys.: Condens. Matter 21 395502 |
[32] | Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461 |
[33] | Dronskowski R and Blöchl P E 1993 J. Phys. Chem. 97 8617 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|