Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 087303    DOI: 10.1088/0256-307X/40/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Engineering Interlayer Hybridization in Energy Space via Dipolar Overlayers
Bin Shao1,2, Xiao Jiang2, Jan Berges3, Sheng Meng4,5,6, and Bing Huang2,7*
1College of Electronic Information and Optical Engineering, and Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, China
2Beijing Computational Science Research Center, Beijing 100193, China
3Institut für Theoretische Physik, Bremen Center for Computational Materials Science, and MAPEX Center for Materials and Processes, Universität Bremen, Bremen D-28359, Germany
4Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
5Songshan Lake Materials Laboratory, Dongguan 523808, China
6School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
7Department of Physics, Beijing Normal University, Beijing 100875, China
Cite this article:   
Bin Shao, Xiao Jiang, Jan Berges et al  2023 Chin. Phys. Lett. 40 087303
Download: PDF(6860KB)   PDF(mobile)(6877KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The interlayer hybridization (IH) of van der Waals (vdW) materials is thought to be mostly associated with the unignorable interlayer overlaps of wavefunctions ($t$) in real space. Here, we develop a more fundamental understanding of IH by introducing a new physical quantity, the IH admixture ratio $\alpha$. Consequently, an exotic strategy of IH engineering in energy space can be proposed, i.e., instead of changing $t$ as commonly used, $\alpha$ can be effectively tuned in energy space by changing the on-site energy difference (${2\varDelta}$) between neighboring-layer states. In practice, this is feasible via reshaping the electrostatic potential of the surface by deposing a dipolar overlayer, e.g., crystalline ice. Our first-principles calculations unveil that IH engineering via adjusting ${2\varDelta}$ can greatly tune interlayer optical transitions in transition-metal dichalcogenide bilayers, switch different types of Dirac surface states in Bi$_{2}$Se$_{3}$ thin films, and control magnetic phase transition of charge density waves in 1H/1T-TaS$_{2}$ bilayers, opening new opportunities to govern the fundamental optoelectronic, topological, and magnetic properties of vdW systems beyond the traditional interlayer distance or twisting engineering.
Received: 27 June 2023      Express Letter Published: 24 July 2023
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  73.43.Cd (Theory and modeling)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/087303       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/087303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin Shao
Xiao Jiang
Jan Berges
Sheng Meng
and Bing Huang
[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[2] Novoselov K S, Mishchenko A, Carvalho A, and Castro Neto A H 2016 Science 353 aac9439
[3] Cappelluti E, Roldán R, Silva-Guillén J A, Ordejón P, and Guinea F 2013 Phys. Rev. B 88 075409
[4] Tongay S, Fan W, Kang J et al. 2014 Nano Lett. 14 3185
[5] Fang H, Battaglia C, Carraro C et al. 2014 Proc. Natl. Acad. Sci. USA 111 6198
[6] Xia J, Yan J, Wang Z et al. 2021 Nat. Phys. 17 92
[7] Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666
[8] Hunt B, Sanchez-Yamagishi J D, Young A F et al. 2013 Science 340 1427
[9] Li T X, Jiang S W, Sivadas N et al. 2019 Nat. Mater. 18 1303
[10] Song T C, Fei Z Y, Yankowitz M et al. 2019 Nat. Mater. 18 1298
[11] Zhou H X, Xie T, Taniguchi T, Watanabe K, and Young A F 2021 Nature 598 434
[12] Rivera P, Schaibley J R, Jones A M et al. 2015 Nat. Commun. 6 6242
[13] Rivera P, Seyler K L, Yu H et al. 2016 Science 351 688
[14] Ritschel T, Trinckauf J, Koepernik K et al. 2015 Nat. Phys. 11 328
[15] Butler C J, Yoshida M, Hanaguri T, and Iwasa Y 2020 Nat. Commun. 11 2477
[16] Cao Y, Fatemi V, Fang S et al. 2018 Nature 556 43
[17] Cao Y, Fatemi V, Demir A et al. 2018 Nature 556 80
[18] Brill R and Tippe A 1967 Acta Crystallogr. 23 343
[19] Hong X P, Kim J, Shi S F et al. 2014 Nat. Nanotechnol. 9 682
[20] Fu L, Kane C L, and Mele E J 2007 Phys. Rev. Lett. 98 106803
[21] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[22] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[23] Zhang H J, Liu C X, Qi X L et al. 2009 Nat. Phys. 5 438
[24] Xia Y, Qian D, Hsieh D et al. 2009 Nat. Phys. 5 398
[25] Lu H Z, Shan W Y, Yao W, Niu Q, and Shen S Q 2010 Phys. Rev. B 81 115407
[26] Zhang Y, He K, Chang C Z et al. 2010 Nat. Phys. 6 584
[27] Chen C, Sodemann I, and Lee P A 2021 Phys. Rev. B 103 085128
[28] Vaňo V, Amini M, Ganguli S C et al. 2021 Nature 599 582
[29] Doniach S 1977 Physica B+C 91 231
[30] Dyke T R and Muenter J S 1973 J. Chem. Phys. 59 3125
[31] Svishchev I M and Kusalik P G 1994 Phys. Rev. Lett. 73 975
[32] Svishchev I M and Kusalik P G 1996 J. Am. Chem. Soc. 118 649
[33] Sutmann G 1998 J. Electroanal. Chem. 450 289
[34] Karschnick G and Anderson O, Drube W, and Skibowski M 1985 Surf. Sci. 155 46
[35] Rasch J C E, Stemmler T, Müller B, Dudy L, and Manzke R 2008 Phys. Rev. Lett. 101 237602
[36] May M M, Brabetz C, Janowitz C, and Manzke R 2011 Phys. Rev. Lett. 107 176405
[37] Shen S W, Shao B, Wen C et al. 2020 Nano Lett. 20 8854
[38] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[39] Blöchl P E 1994 Phys. Rev. B 50 17953
[40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[41] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Zhang W, Yu R, Zhang H J, Dai X, and Fang Z 2010 New J. Phys. 12 065013
[43] Grimme S 2006 J. Comput. Chem. 27 1787
[44] Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067
[45] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505
[46] Darancet P, Millis A J, and Marianetti C A 2014 Phys. Rev. B 90 045134
[47] Qiao S et al. 2017 Phys. Rev. X 7 041054
[48] Pizzi G et al. 2020 J. Phys.: Condens. Matter 32 165902
[49] Berges J, Schobert A, van Loon E G C P, Rösner M, and Wehling T O 2022 elphmod: Python modules to handle electron-phonon models (v0.10) (Zenodo)
[50] Jiang X, Kang L, and Huang B 2022 Phys. Rev. B 105 045415
Related articles from Frontiers Journals
[1] Jinsen Han, Kang Lai, Xiaoxiang Yu, Jiahao Chen, Hongli Guo, and Jiayu Dai. Optical Tunable Moiré Excitons in Twisted Hexagonal GaTe Bilayers[J]. Chin. Phys. Lett., 2023, 40(6): 087303
[2] Li Zhu, Wei-Min Zhao, Zhen-Yu Jia, Huiping Li, Xuedong Xie, Qi-Yuan Li, Qi-Wei Wang, Li-Guo Dou, Ju-Gang Hu, Yi Zhang, Wenguang Zhu, Shun-Li Yu, Jian-Xin Li, and Shao-Chun Li. Electron-Exciton Coupling in 1T-TiSe$_{2}$ Bilayer[J]. Chin. Phys. Lett., 2023, 40(5): 087303
[3] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 087303
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 087303
[5] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 087303
[6] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 087303
[7] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 087303
[8] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 087303
[9] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 087303
[10] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 087303
[11] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 087303
[12] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 087303
[13] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 087303
[14] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 087303
[15] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 087303
Viewed
Full text


Abstract