CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Engineering Interlayer Hybridization in Energy Space via Dipolar Overlayers |
Bin Shao1,2, Xiao Jiang2, Jan Berges3, Sheng Meng4,5,6, and Bing Huang2,7* |
1College of Electronic Information and Optical Engineering, and Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, China 2Beijing Computational Science Research Center, Beijing 100193, China 3Institut für Theoretische Physik, Bremen Center for Computational Materials Science, and MAPEX Center for Materials and Processes, Universität Bremen, Bremen D-28359, Germany 4Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 5Songshan Lake Materials Laboratory, Dongguan 523808, China 6School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 7Department of Physics, Beijing Normal University, Beijing 100875, China
|
|
Cite this article: |
Bin Shao, Xiao Jiang, Jan Berges et al 2023 Chin. Phys. Lett. 40 087303 |
|
|
Abstract The interlayer hybridization (IH) of van der Waals (vdW) materials is thought to be mostly associated with the unignorable interlayer overlaps of wavefunctions ($t$) in real space. Here, we develop a more fundamental understanding of IH by introducing a new physical quantity, the IH admixture ratio $\alpha$. Consequently, an exotic strategy of IH engineering in energy space can be proposed, i.e., instead of changing $t$ as commonly used, $\alpha$ can be effectively tuned in energy space by changing the on-site energy difference (${2\varDelta}$) between neighboring-layer states. In practice, this is feasible via reshaping the electrostatic potential of the surface by deposing a dipolar overlayer, e.g., crystalline ice. Our first-principles calculations unveil that IH engineering via adjusting ${2\varDelta}$ can greatly tune interlayer optical transitions in transition-metal dichalcogenide bilayers, switch different types of Dirac surface states in Bi$_{2}$Se$_{3}$ thin films, and control magnetic phase transition of charge density waves in 1H/1T-TaS$_{2}$ bilayers, opening new opportunities to govern the fundamental optoelectronic, topological, and magnetic properties of vdW systems beyond the traditional interlayer distance or twisting engineering.
|
|
Received: 27 June 2023
Express Letter
Published: 24 July 2023
|
|
PACS: |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
73.43.Cd
|
(Theory and modeling)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
|
|
|
[1] | Geim A K and Grigorieva I V 2013 Nature 499 419 |
[2] | Novoselov K S, Mishchenko A, Carvalho A, and Castro Neto A H 2016 Science 353 aac9439 |
[3] | Cappelluti E, Roldán R, Silva-Guillén J A, Ordejón P, and Guinea F 2013 Phys. Rev. B 88 075409 |
[4] | Tongay S, Fan W, Kang J et al. 2014 Nano Lett. 14 3185 |
[5] | Fang H, Battaglia C, Carraro C et al. 2014 Proc. Natl. Acad. Sci. USA 111 6198 |
[6] | Xia J, Yan J, Wang Z et al. 2021 Nat. Phys. 17 92 |
[7] | Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666 |
[8] | Hunt B, Sanchez-Yamagishi J D, Young A F et al. 2013 Science 340 1427 |
[9] | Li T X, Jiang S W, Sivadas N et al. 2019 Nat. Mater. 18 1303 |
[10] | Song T C, Fei Z Y, Yankowitz M et al. 2019 Nat. Mater. 18 1298 |
[11] | Zhou H X, Xie T, Taniguchi T, Watanabe K, and Young A F 2021 Nature 598 434 |
[12] | Rivera P, Schaibley J R, Jones A M et al. 2015 Nat. Commun. 6 6242 |
[13] | Rivera P, Seyler K L, Yu H et al. 2016 Science 351 688 |
[14] | Ritschel T, Trinckauf J, Koepernik K et al. 2015 Nat. Phys. 11 328 |
[15] | Butler C J, Yoshida M, Hanaguri T, and Iwasa Y 2020 Nat. Commun. 11 2477 |
[16] | Cao Y, Fatemi V, Fang S et al. 2018 Nature 556 43 |
[17] | Cao Y, Fatemi V, Demir A et al. 2018 Nature 556 80 |
[18] | Brill R and Tippe A 1967 Acta Crystallogr. 23 343 |
[19] | Hong X P, Kim J, Shi S F et al. 2014 Nat. Nanotechnol. 9 682 |
[20] | Fu L, Kane C L, and Mele E J 2007 Phys. Rev. Lett. 98 106803 |
[21] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[22] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[23] | Zhang H J, Liu C X, Qi X L et al. 2009 Nat. Phys. 5 438 |
[24] | Xia Y, Qian D, Hsieh D et al. 2009 Nat. Phys. 5 398 |
[25] | Lu H Z, Shan W Y, Yao W, Niu Q, and Shen S Q 2010 Phys. Rev. B 81 115407 |
[26] | Zhang Y, He K, Chang C Z et al. 2010 Nat. Phys. 6 584 |
[27] | Chen C, Sodemann I, and Lee P A 2021 Phys. Rev. B 103 085128 |
[28] | Vaňo V, Amini M, Ganguli S C et al. 2021 Nature 599 582 |
[29] | Doniach S 1977 Physica B+C 91 231 |
[30] | Dyke T R and Muenter J S 1973 J. Chem. Phys. 59 3125 |
[31] | Svishchev I M and Kusalik P G 1994 Phys. Rev. Lett. 73 975 |
[32] | Svishchev I M and Kusalik P G 1996 J. Am. Chem. Soc. 118 649 |
[33] | Sutmann G 1998 J. Electroanal. Chem. 450 289 |
[34] | Karschnick G and Anderson O, Drube W, and Skibowski M 1985 Surf. Sci. 155 46 |
[35] | Rasch J C E, Stemmler T, Müller B, Dudy L, and Manzke R 2008 Phys. Rev. Lett. 101 237602 |
[36] | May M M, Brabetz C, Janowitz C, and Manzke R 2011 Phys. Rev. Lett. 107 176405 |
[37] | Shen S W, Shao B, Wen C et al. 2020 Nano Lett. 20 8854 |
[38] | Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245 |
[39] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[40] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[41] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[42] | Zhang W, Yu R, Zhang H J, Dai X, and Fang Z 2010 New J. Phys. 12 065013 |
[43] | Grimme S 2006 J. Comput. Chem. 27 1787 |
[44] | Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067 |
[45] | Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505 |
[46] | Darancet P, Millis A J, and Marianetti C A 2014 Phys. Rev. B 90 045134 |
[47] | Qiao S et al. 2017 Phys. Rev. X 7 041054 |
[48] | Pizzi G et al. 2020 J. Phys.: Condens. Matter 32 165902 |
[49] | Berges J, Schobert A, van Loon E G C P, Rösner M, and Wehling T O 2022 elphmod: Python modules to handle electron-phonon models (v0.10) (Zenodo) |
[50] | Jiang X, Kang L, and Huang B 2022 Phys. Rev. B 105 045415 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|