GENERAL |
|
|
|
|
Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems |
Xinyi Zhang1 and Ye Wu2* |
1School of Statistics, Beijing Normal University, Beijing 100875, China 2School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
|
|
Cite this article: |
Xinyi Zhang and Ye Wu 2023 Chin. Phys. Lett. 40 080502 |
|
|
Abstract In practical optical communication systems, there are some factors that can affect transmission quality of optical solitons. The constant coefficient nonlinear Schrödinger (NLS) equation has been unable to meet the actual research needs. We need to use the variable coefficient NLS equation to simulate an actual system, so as to explore its potential application value. Based on the variable coefficient NLS equation, six dispersion decreasing fibers (DDFs) with different dispersion curve functions are used as transmission media to study generation and interaction of two solitons in an optical communication system. The two soliton interaction phenomena, such as the bound state solitons, are theoretically obtained. Moreover, the output characteristics of bound state solitons in different DDFs are discussed, which enriches the transmission phenomenon of two solitons in the optical communication system. This study has great application value in fields such as optical information processing devices, condensed matter physics, and plasma, and provides an indispensable theoretical basis for development of new optical devices.
|
|
Received: 21 June 2023
Published: 09 August 2023
|
|
PACS: |
05.45.Yv
|
(Solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
|
|
|
[1] | Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501 |
[2] | Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201 |
[3] | Zhou Q 2022 Chin. Phys. Lett. 39 010501 |
[4] | Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202 |
[5] | Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202 |
[6] | Wang T Y, Zhou Q, and Liu W J 2022 Chin. Phys. B 31 020501 |
[7] | Ma H C, Gao Y D, and Deng A P 2022 Chin. Phys. B 31 070201 |
[8] | Zhang X F, Xu T, Li M, and Meng Y 2023 Chin. Phys. B 32 010505 |
[9] | Zhang Y Y, Liu Z Q, Qi J X, and An H L 2023 Chin. Phys. B 32 030505 |
[10] | Li Z Q, Tian S F, Yang J J, and Fan E G 2022 J. Differ. Equ. 329 31 |
[11] | Li L, Liu Y Y, and Yu F J 2022 Appl. Math. Lett. 129 107976 |
[12] | Zhang Z, Qi Z Q, and Li B 2021 Appl. Math. Lett. 116 107004 |
[13] | Zahran E H M, Bekir A, and Shehata M S M 2023 Opt. Quantum Electron. 55 190 |
[14] | Ye Y L, Bu L L, Wang W W, Chen S H, Baronio F, and Mihalache D 2020 Front. Phys. 8 596950 |
[15] | Serkin V N and Belyaeva T L 2018 Optik 158 1289 |
[16] | Song Y F, Shi X J, Wu C F, Tang D Y, and Zhang H 2019 Appl. Phys. Rev. 6 021313 |
[17] | Derevyanko S A and Prilepsky J E 2008 Phys. Rev. E 78 046610 |
[18] | Brugarino T and Sciacca M 2006 Opt. Commun. 262 250 |
[19] | Li S Q, Li L, Li Z H, and Zhou G S 2004 J. Opt. Soc. Am. B 21 2089 |
[20] | Diao J J and Cong X 2002 Phys. Scr. 65 336 |
[21] | Ablowitz M J, Biondini G, and Ostrovsky L A 2000 Chaos 10 471 |
[22] | Zhou Q, Huang Z H, Sun Y Z, Triki H, Liu W J, and Biswas A 2023 Nonlinear Dyn. 111 5757 |
[23] | Guan X, Yang H J, Meng X K, and Liu W J 2023 Appl. Math. Lett. 136 108466 |
[24] | Yu W T, Liu W J, and Zhang H X 2022 Chaos Solitons & Fractals 159 112132 |
[25] | Turitsyn S K, Bale B G, and Fedoruk M P 2012 Phys. Rep. 521 135 |
[26] | Liu S Z, Zhou Q, Biswas A, and Liu W J 2019 Nonlinear Dyn. 98 395 |
[27] | Zhou Q, Wang T Y, Biswas A, and Liu W J 2022 Nonlinear Dyn. 107 1215 |
[28] | Ma G L, Zhao J B, Zhou Q, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2479 |
[29] | Wang L L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2021 Nonlinear Dyn. 104 2613 |
[30] | Wang L L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2021 Nonlinear Dyn. 104 629 |
[31] | Feng W W, Chen L G, Ma G L, and Zhou Q 2022 Nonlinear Dyn. 108 2483 |
[32] | Mani Rajan M S and Mahalingam A 2015 Nonlinear Dyn. 79 2469 |
[33] | Liu X Y, Zhang H X, and Liu W J 2022 Appl. Math. Modell. 102 305 |
[34] | Liu X Y, Triki H, Zhou Q, Liu W J, and Biswas A 2018 Nonlinear Dyn. 94 703 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|