Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 080501    DOI: 10.1088/0256-307X/40/8/080501
GENERAL |
Stochastic Resonance in a Single-Ion Nonlinear Mechanical Oscillator
Tai-Hao Cui1,2†, Ji Li3†, Quan Yuan1,2†, Ya-Qi Wei4, Shuang-Qing Dai1,2, Pei-Dong Li1,2, Fei Zhou1,3, Jian-Qi Zhang1*, Liang Chen1,3*, and Mang Feng1,3,5*
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
4Laboratory of Quantum Science and Engineering, South China University of Technology, Guangzhou 510641, China
5Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Cite this article:   
Tai-Hao Cui, Ji Li, Quan Yuan et al  2023 Chin. Phys. Lett. 40 080501
Download: PDF(1207KB)   PDF(mobile)(1220KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Stochastic resonance is a counterintuitive phenomenon amplifying the weak periodic signal by application of external noise. We demonstrate the enhancement of a weak periodic signal by stochastic resonance in a trapped-ion oscillator when the oscillator is excited to the nonlinear regime and subject to an appropriate noise. Under the full control of the radio-frequency drive voltage, this amplification originates from the nonlinearity due to asymmetry of the trapping potential, which can be described by a forced Duffing oscillator model. Our scheme and results provide an interesting possibility to make use of controllable nonlinearity in the trapped ion, and pave the way toward a practical atomic sensor for sensitively detecting weak periodic signals from real noisy environment.
Received: 07 April 2023      Published: 04 August 2023
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/080501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tai-Hao Cui
Ji Li
Quan Yuan
Ya-Qi Wei
Shuang-Qing Dai
Pei-Dong Li
Fei Zhou
Jian-Qi Zhang
Liang Chen
and Mang Feng
[1] Paul W 1990 Rev. Mod. Phys. 62 531
[2] Leibfried D, Blatt R, Monroe C, and Wineland D 2003 Rev. Mod. Phys. 75 281
[3] Vahala K, Herrmann M, Knunz S, Batteiger V, Saathoff G, Hänsch T W, and Udem T 2009 Nat. Phys. 5 682
[4] Knünz S, Herrmann M, Batteiger V, Saathoff G, Hänsch T W, Vahala K, and Udem T 2010 Phys. Rev. Lett. 105 013004
[5] Xie Y, Wan W, Wu H Y, Zhou F, Chen L, and Feng M 2013 Phys. Rev. A 87 053402
[6] Drakoudis A, Snollner M, and Werth G 2006 Int. J. Mass Spectrom. 252 61
[7] Makarov A A 1996 Anal. Chem. 68 4257
[8] Akerman N, Kotler S, Glickman Y, Dallal Y, Keselman A, and Ozeri R 2010 Phys. Rev. A 82 061402(R)
[9] Biercuk M J, Uys H, Britton J W, VanDevender A P, and Bollinger J J 2010 Nat. Nanotechnol. 5 646
[10] Gammaitoni L, Hänggi P, Jung P, and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[11] Benzi R, Sutera A, and Vulpiani A 1981 J. Phys. A 14 L453
[12] Levin J E and Miller J P 1996 Nature 380 165
[13] Douglass J K, Wilkens L, Pantazelou E, and Moss F 1993 Nature 365 337
[14] Li Z P, Li C H, Xiong Z, Xu G Q, Wang Y R, Tian X, Yang X, Liu Z, Zeng Q H, Lin R Z, Li Y, Lee J K W, Ho J S, and Qiu C W 2023 Phys. Rev. Lett. 130 227801
[15] Hibbs A D, Singsaas A L, Jacobs E W, Bulsara A R, Bekkedahl J J, and Moss F 1995 J. Appl. Phys. 77 2582
[16] Rouse R, Han S, and Lukens J E 1995 Appl. Phys. Lett. 66 108
[17] Joshi A and Xiao M 2006 Phys. Rev. A 74 013817
[18] McNamara B, Wiesenfeld K, and Roy R 1988 Phys. Rev. Lett. 60 2626
[19] Mompo E, Ruiz-Garcia M, Carretero M et al. 2021 Phys. Rev. Lett. 121 086805
[20] Shao Z Z, Yin Z Z, Song H L, Liu W, Li X J, Zhu J B, Biermann K, Bonilla L L, Grahn H T, and Zhang Y H 2018 Phys. Rev. Lett. 121 086806
[21] Dodda A, Oberoi A, Sebastian A, Choudhury T H, Redwing J M, and Das S 2020 Nat. Commun. 11 4406
[22] Monifi F, Zhang J, Özdemir S K, Peng B, Liu Y X, Bo F, Nori F, and Yang L 2016 Nat. Photon. 10 399
[23] Chowdhury A, Barbay S, Clerc M G, Robert-Philip I, and Braive R 2017 Phys. Rev. Lett. 119 234101
[24] Badzey R L and Mohanty P 2005 Nature 437 995
[25] House M G 2008 Phys. Rev. A 78 033402
[26] Wan W, Wu H Y, Chen L, Zhou F, Gong S J, and Feng M 2014 Phys. Rev. A 89 063401
[27] Li J, Yan L L, Chen L, Liu Z C, Zhou F, Zhang J Q, Yang W L, and Feng M 2019 Phys. Rev. A 99 063402
[28] Liu Z C, Chen L, Li J, Zhang H, Li C, Zhou F, Su S L, Yan L L, and Feng M 2020 Phys. Rev. A 102 033116
[29] Gammaitoni L, Marchesoni F, Menichella-Saetta E, and Santucci S 1989 Phys. Rev. Lett. 62 349
[30] Jung P and Hänggi P 1991 Phys. Rev. A 44 8032
[31] Cottone F, Vocca H, and Gammaitoni L 2009 Phys. Rev. Lett. 102 080601
[32] Gu X J and Chen C Z 2019 J. Mech. Sci. Technol. 33 1017
Related articles from Frontiers Journals
[1] R. Salci, D. A. Acar, O. Oztirpan, M. Ramazanoglu. A New Probe: AFM Measurements for Random Disorder Systems[J]. Chin. Phys. Lett., 2019, 36(1): 080501
[2] Xiang Zhang, Yu-Dong Li, Lin Wen, Dong Zhou, Jie Feng, Lin-Dong Ma, Tian-Hui Wang, Yu-Long Cai, Zhi-Ming Wang, Qi Guo. Radiation Effects Due to 3MeV Proton Irradiations on Back-Side Illuminated CMOS Image Sensors[J]. Chin. Phys. Lett., 2018, 35(7): 080501
[3] Yan-Ling Feng, Jian-Min Dong, Xu-Lei Tang. Non-Markovian Effect on Gene Transcriptional Systems[J]. Chin. Phys. Lett., 2016, 33(10): 080501
[4] Ling-Wei Kong, Rong-Zheng Wan, Hai-Ping Fang. Transportation of Two Coupled Particles in an Asymmetric Saw-Tooth Potential[J]. Chin. Phys. Lett., 2016, 33(02): 080501
[5] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 080501
[6] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 080501
[7] SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang, LIANG Wen-Ye, ZHANG Chun-Mei, HAN Yun-Guang, CHEN Wei, HAN Zheng-Fu. Phase-Coding Self-Testing Quantum Random Number Generator[J]. Chin. Phys. Lett., 2015, 32(08): 080501
[8] LI Jing-Hui. Dilemma Produced by Infinity of a Random Walk[J]. Chin. Phys. Lett., 2015, 32(5): 080501
[9] LAI Chu-Yu, CHEN Ju-Hua, WANG Yong-Jiu. The Motion of Spinning Particles in the Spacetime of a Black Hole with a Cosmic String Topological Defect[J]. Chin. Phys. Lett., 2014, 31(09): 080501
[10] WANG Can-Jun, YANG Ke-Li, QU Shi-Xian. Time-Delay Enhanced Coherence Resonance in a Discrete Neuron with Noises[J]. Chin. Phys. Lett., 2014, 31(08): 080501
[11] LI Jing-Hui. Average Mean Escape Time for an Overdamped Spatially-Periodic System and Application to Josephson Junction[J]. Chin. Phys. Lett., 2014, 31(06): 080501
[12] LI Jing-Hui. Response of a Superconducting Quantum Interference Device to Alternating Magnetic Field[J]. Chin. Phys. Lett., 2014, 31(06): 080501
[13] LI Jing-Hui. Stochastic Resonance for a SQUID with Dichotomous Resistance[J]. Chin. Phys. Lett., 2014, 31(03): 080501
[14] ZENG Ling-Zao, LIU Bing-Yang, XU Yi-Da, LI Jian-Long. Effect of Time Delay on Binary Signal Detection via a Bistable System[J]. Chin. Phys. Lett., 2014, 31(2): 080501
[15] SUN Xiao-Juan, LU Qi-Shao. Non-Gaussian Colored Noise Optimized Spatial Coherence of a Hodgkin–Huxley Neuronal Network[J]. Chin. Phys. Lett., 2014, 31(2): 080501
Viewed
Full text


Abstract