ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Observation of Two-Dimensional Mott Insulator and $\pi$-Superfluid Quantum Phase Transition in Shaking Optical Lattice |
Jingxin Sun1, Pengju Zhao2, Zhongshu Hu2, Shengjie Jin2, Ren Liao1, Xiong-Jun Liu2*, and Xuzong Chen1* |
1School of Electronics, Peking University, Beijing 100871, China 2School of Physics, Peking University, Beijing 100871, China
|
|
Cite this article: |
Jingxin Sun, Pengju Zhao, Zhongshu Hu et al 2023 Chin. Phys. Lett. 40 083701 |
|
|
Abstract The Mott insulator and superfluid phase transition is one of the most prominent phenomena in ultracold atoms. We report the observation of a novel 2D quantum phase transition between the Mott insulator and $\pi$ superfluid in a shaking optical lattice. In the deep optical lattice regime, the lowest $S$ band can be tuned to Mott phase, while the higher $P_{x,y}$ bands are itinerant for having larger bandwidth. Through a shaking technique coupling the $s$-orbital to $p_{x,y}$-orbital states, we experimentally observe the transition between the states of the $S$ and $P_{x,y}$ bands, leading to a quantum phase transition from two-dimensional $s$-orbital Mott phase to the $p_{x,y}$-orbital superfluid which condensed at $(\pi,\pi)$ momentum. Using the band-mapping method, we also observe the changes of atomic population in different energy bands during the transition, and the experimental results are well consistent with theoretical expectations.
|
|
Received: 09 May 2023
Published: 13 August 2023
|
|
PACS: |
37.10.Jk
|
(Atoms in optical lattices)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
42.15.Eq
|
(Optical system design)
|
|
|
|
|
[1] | Jaksch D, Bruder C, Cirac J I, Gardiner C W, and Zoller P 1998 Phys. Rev. Lett. 81 3108 |
[2] | Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, and Kuhr S 2010 Nature 467 68 |
[3] | Tarruell L, Greif D, Uehlinger T, Jotzu G, and Esslinger T 2012 Nature 483 302 |
[4] | Fisher M P, Weichman P B, Grinstein G, and Fisher D S 1989 Phys. Rev. B 40 546 |
[5] | Greiner M, Mandel O, Esslinger T, Hänsch T W, and Bloch I 2002 Nature 415 39 |
[6] | Greiner M, Mandel O, Hänsch T W, and Bloch I 2002 Nature 419 51 |
[7] | Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910 |
[8] | Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, and Bloch I 2003 Nature 425 937 |
[9] | Stöferle T, Moritz H, Schori C, Köhl M, and Esslinger T 2004 Phys. Rev. Lett. 92 130403 |
[10] | Spielman I, Phillips W, and Porto J 2008 Phys. Rev. Lett. 100 120402 |
[11] | Gerbier F, Widera A, Fölling S, Mandel O, Gericke T, and Bloch I 2005 Phys. Rev. A 72 053606 |
[12] | Gerbier F, Widera A, Fölling S, Mandel O, Gericke T, and Bloch I 2005 Phys. Rev. Lett. 95 050404 |
[13] | Jördens R, Strohmaier N, Günter K, Moritz H, and Esslinger T 2008 Nature 455 204 |
[14] | Schneider U, Hackermuller L, Will S, Best T, Bloch I, Costi T A, Helmes R, Rasch D, and Rosch A 2008 Science 322 1520 |
[15] | Wirth G, Ölschläger M, and Hemmerich A 2011 Nat. Phys. 7 147 |
[16] | Lewenstein M and Liu W V 2011 Nat. Phys. 7 101 |
[17] | Viebahn K, Minguzzi J, Sandholzer K, Walter A S, Sajnani M, Görg F, and Esslinger T 2021 Phys. Rev. X 11 011057 |
[18] | Isacsson A and Girvin S 2005 Phys. Rev. A 72 053604 |
[19] | Kuklov A 2006 Phys. Rev. Lett. 97 110405 |
[20] | Liu W V and Wu C J 2006 Phys. Rev. A 74 013607 |
[21] | Wu C J 2008 Phys. Rev. Lett. 100 200406 |
[22] | Li X P, Liu W V, and Lin C W 2011 Phys. Rev. A 83 021602 |
[23] | Li X P, Zhao E, and Liu W V 2011 Phys. Rev. A 83 063626 |
[24] | Li X P, Zhang Z X, and Liu W V 2012 Phys. Rev. Lett. 108 175302 |
[25] | Li X P and Liu W V 2016 Rep. Prog. Phys. 79 116401 |
[26] | Morimoto T, Po H C, and Vishwanath A 2017 Phys. Rev. B 95 195155 |
[27] | Ticco S V P, Fornasier G, Manini N, Santoro G E, Tosatti E, and Vanossi A 2016 J. Phys.: Condens. Matter 28 134006 |
[28] | Niu L X, Jin S J, Chen X Z, Li X P, and Zhou X J 2018 Phys. Rev. Lett. 121 265301 |
[29] | Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, and Li X P 2021 Phys. Rev. Lett. 126 035301 |
[30] | Wang X Q, Luo G Q, Liu J Y, Liu W V, Hemmerich A, and Xu Z F 2021 Nature 596 227 |
[31] | Clark L W, Feng L, and Chin C 2016 Science 354 606 |
[32] | Clark L W, Anderson B M, Feng L, Gaj A, Levin K, and Chin C 2018 Phys. Rev. Lett. 121 030402 |
[33] | Sun J X, Liao R, Zhao P J, Hu Z S, Wang Z K, Liu X J, Zhou X J, and Chen X Z 2023 J. Phys. B 56 095302 |
[34] | Parker C V, Ha L C, and Chin C 2013 Nat. Phys. 9 769 |
[35] | Sachdeva R and Busch T 2017 Phys. Rev. A 95 033615 |
[36] | Ha L C, Clark L W, Parker C V, Anderson B M, and Chin C 2015 Phys. Rev. Lett. 114 055301 |
[37] | Liu X J, Liu X, Wu C, and Sinova J 2010 Phys. Rev. A 81 033622 |
[38] | Li X P, Zhao E H, and Vincent L W 2013 Nat. Commun. 4 1523 |
[39] | Pan J S, Liu W V, and Liu X J 2020 Phys. Rev. Lett. 125 260402 |
[40] | Görg F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M, and Esslinger T 2019 Nat. Phys. 15 1161 |
[41] | Liu X J, Borunda M F, Liu X, and Sinova J 2009 Phys. Rev. Lett. 102 046402 |
[42] | Lin Y J, Jiménez-Garcı́a K, and Spielman I B 2011 Nature 471 83 |
[43] | Ando Y 2013 J. Phys. Soc. Jpn. 82 102001 |
[44] | Zhou X F, Li Y, Cai Z, and Wu C J 2013 J. Phys. B 46 134001 |
[45] | Zhang S L and Zhou Q 2014 Phys. Rev. A 90 051601 |
[46] | Mei F, You J B, Zhang D W, Yang X, Fazio R, Zhu S L, and Kwek L C 2014 Phys. Rev. A 90 063638 |
[47] | Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, and Pan J W 2016 Science 354 83 |
[48] | Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L, Li D H, Zhou Q, and Zhang J 2016 Nat. Phys. 12 540 |
[49] | Zhang L and Liu X J 2018 Synthetic Spin-Orbit Coupling in Cold Atoms (Singapore: World Scientific) p 1 |
[50] | Sun W, Wang B Z, Xu X T, Yi C R, Zhang L, Wu Z, Deng Y, Liu X J, Chen S, and Pan J W 2018 Phys. Rev. Lett. 121 150401 |
[51] | Cooper N, Dalibard J, and Spielman I 2019 Rev. Mod. Phys. 91 015005 |
[52] | Lu Y H, Wang B Z, and Liu X J 2020 Sci. Bull. 65 2080 |
[53] | Yue Y, de Melo C S, and Spielman I 2020 Phys. Rev. A 102 033325 |
[54] | Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S et al. 2021 Science 372 271 |
[55] | Lu M W, Reid G, Fritsch A, Piñeiro A M, and Spielman I B 2022 Phys. Rev. Lett. 129 040402 |
[56] | Eckardt A, Weiss C, and Holthaus M 2005 Phys. Rev. Lett. 95 260404 |
[57] | Zenesini A, Lignier H, Ciampini D, Morsch O, and Arimondo E 2009 Phys. Rev. Lett. 102 100403 |
[58] | Song B, Dutta S, Bhave S, Yu J C, Carter E, Cooper N, and Schneider U 2022 Nat. Phys. 18 259 |
[59] | Ejima S, Fehske H, Gebhard F, zu Münster K, Knap M, Arrigoni E, and von der L W 2012 Phys. Rev. A 85 053644 |
[60] | Greiner M, Bloch I, Mandel O, Hänsch T W, and Esslinger T 2001 Phys. Rev. Lett. 87 160405 |
[61] | Kastberg A, Phillips W D, Rolston S, Spreeuw R, and Jessen P S 1995 Phys. Rev. Lett. 74 1542 |
[62] | Huang Q, Yao R, Liang L, Wang S, Zheng Q, Li D, Xiong W, Zhou X, Chen W, Chen X et al. 2021 Phys. Rev. Lett. 127 200601 |
[63] | Miao J, Liu B, and Zheng W 2015 Phys. Rev. A 91 033404 |
[64] | Capogrosso-Sansone B, Söyler Ş G, Prokof'ev N, and Svistunov B 2008 Phys. Rev. A 77 015602 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|