Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 083701    DOI: 10.1088/0256-307X/40/8/083701
ATOMIC AND MOLECULAR PHYSICS |
Observation of Two-Dimensional Mott Insulator and $\pi$-Superfluid Quantum Phase Transition in Shaking Optical Lattice
Jingxin Sun1, Pengju Zhao2, Zhongshu Hu2, Shengjie Jin2, Ren Liao1, Xiong-Jun Liu2*, and Xuzong Chen1*
1School of Electronics, Peking University, Beijing 100871, China
2School of Physics, Peking University, Beijing 100871, China
Cite this article:   
Jingxin Sun, Pengju Zhao, Zhongshu Hu et al  2023 Chin. Phys. Lett. 40 083701
Download: PDF(10825KB)   PDF(mobile)(10853KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Mott insulator and superfluid phase transition is one of the most prominent phenomena in ultracold atoms. We report the observation of a novel 2D quantum phase transition between the Mott insulator and $\pi$ superfluid in a shaking optical lattice. In the deep optical lattice regime, the lowest $S$ band can be tuned to Mott phase, while the higher $P_{x,y}$ bands are itinerant for having larger bandwidth. Through a shaking technique coupling the $s$-orbital to $p_{x,y}$-orbital states, we experimentally observe the transition between the states of the $S$ and $P_{x,y}$ bands, leading to a quantum phase transition from two-dimensional $s$-orbital Mott phase to the $p_{x,y}$-orbital superfluid which condensed at $(\pi,\pi)$ momentum. Using the band-mapping method, we also observe the changes of atomic population in different energy bands during the transition, and the experimental results are well consistent with theoretical expectations.
Received: 09 May 2023      Published: 13 August 2023
PACS:  37.10.Jk (Atoms in optical lattices)  
  05.30.Rt (Quantum phase transitions)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  42.15.Eq (Optical system design)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/083701       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/083701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jingxin Sun
Pengju Zhao
Zhongshu Hu
Shengjie Jin
Ren Liao
Xiong-Jun Liu
and Xuzong Chen
[1] Jaksch D, Bruder C, Cirac J I, Gardiner C W, and Zoller P 1998 Phys. Rev. Lett. 81 3108
[2] Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, and Kuhr S 2010 Nature 467 68
[3] Tarruell L, Greif D, Uehlinger T, Jotzu G, and Esslinger T 2012 Nature 483 302
[4] Fisher M P, Weichman P B, Grinstein G, and Fisher D S 1989 Phys. Rev. B 40 546
[5] Greiner M, Mandel O, Esslinger T, Hänsch T W, and Bloch I 2002 Nature 415 39
[6] Greiner M, Mandel O, Hänsch T W, and Bloch I 2002 Nature 419 51
[7] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[8] Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, and Bloch I 2003 Nature 425 937
[9] Stöferle T, Moritz H, Schori C, Köhl M, and Esslinger T 2004 Phys. Rev. Lett. 92 130403
[10] Spielman I, Phillips W, and Porto J 2008 Phys. Rev. Lett. 100 120402
[11] Gerbier F, Widera A, Fölling S, Mandel O, Gericke T, and Bloch I 2005 Phys. Rev. A 72 053606
[12] Gerbier F, Widera A, Fölling S, Mandel O, Gericke T, and Bloch I 2005 Phys. Rev. Lett. 95 050404
[13] Jördens R, Strohmaier N, Günter K, Moritz H, and Esslinger T 2008 Nature 455 204
[14] Schneider U, Hackermuller L, Will S, Best T, Bloch I, Costi T A, Helmes R, Rasch D, and Rosch A 2008 Science 322 1520
[15] Wirth G, Ölschläger M, and Hemmerich A 2011 Nat. Phys. 7 147
[16] Lewenstein M and Liu W V 2011 Nat. Phys. 7 101
[17] Viebahn K, Minguzzi J, Sandholzer K, Walter A S, Sajnani M, Görg F, and Esslinger T 2021 Phys. Rev. X 11 011057
[18] Isacsson A and Girvin S 2005 Phys. Rev. A 72 053604
[19] Kuklov A 2006 Phys. Rev. Lett. 97 110405
[20] Liu W V and Wu C J 2006 Phys. Rev. A 74 013607
[21] Wu C J 2008 Phys. Rev. Lett. 100 200406
[22] Li X P, Liu W V, and Lin C W 2011 Phys. Rev. A 83 021602
[23] Li X P, Zhao E, and Liu W V 2011 Phys. Rev. A 83 063626
[24] Li X P, Zhang Z X, and Liu W V 2012 Phys. Rev. Lett. 108 175302
[25] Li X P and Liu W V 2016 Rep. Prog. Phys. 79 116401
[26] Morimoto T, Po H C, and Vishwanath A 2017 Phys. Rev. B 95 195155
[27] Ticco S V P, Fornasier G, Manini N, Santoro G E, Tosatti E, and Vanossi A 2016 J. Phys.: Condens. Matter 28 134006
[28] Niu L X, Jin S J, Chen X Z, Li X P, and Zhou X J 2018 Phys. Rev. Lett. 121 265301
[29] Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, and Li X P 2021 Phys. Rev. Lett. 126 035301
[30] Wang X Q, Luo G Q, Liu J Y, Liu W V, Hemmerich A, and Xu Z F 2021 Nature 596 227
[31] Clark L W, Feng L, and Chin C 2016 Science 354 606
[32] Clark L W, Anderson B M, Feng L, Gaj A, Levin K, and Chin C 2018 Phys. Rev. Lett. 121 030402
[33] Sun J X, Liao R, Zhao P J, Hu Z S, Wang Z K, Liu X J, Zhou X J, and Chen X Z 2023 J. Phys. B 56 095302
[34] Parker C V, Ha L C, and Chin C 2013 Nat. Phys. 9 769
[35] Sachdeva R and Busch T 2017 Phys. Rev. A 95 033615
[36] Ha L C, Clark L W, Parker C V, Anderson B M, and Chin C 2015 Phys. Rev. Lett. 114 055301
[37] Liu X J, Liu X, Wu C, and Sinova J 2010 Phys. Rev. A 81 033622
[38] Li X P, Zhao E H, and Vincent L W 2013 Nat. Commun. 4 1523
[39] Pan J S, Liu W V, and Liu X J 2020 Phys. Rev. Lett. 125 260402
[40] Görg F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M, and Esslinger T 2019 Nat. Phys. 15 1161
[41] Liu X J, Borunda M F, Liu X, and Sinova J 2009 Phys. Rev. Lett. 102 046402
[42] Lin Y J, Jiménez-Garcı́a K, and Spielman I B 2011 Nature 471 83
[43] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001
[44] Zhou X F, Li Y, Cai Z, and Wu C J 2013 J. Phys. B 46 134001
[45] Zhang S L and Zhou Q 2014 Phys. Rev. A 90 051601
[46] Mei F, You J B, Zhang D W, Yang X, Fazio R, Zhu S L, and Kwek L C 2014 Phys. Rev. A 90 063638
[47] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, and Pan J W 2016 Science 354 83
[48] Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L, Li D H, Zhou Q, and Zhang J 2016 Nat. Phys. 12 540
[49]Zhang L and Liu X J 2018 Synthetic Spin-Orbit Coupling in Cold Atoms (Singapore: World Scientific) p 1
[50] Sun W, Wang B Z, Xu X T, Yi C R, Zhang L, Wu Z, Deng Y, Liu X J, Chen S, and Pan J W 2018 Phys. Rev. Lett. 121 150401
[51] Cooper N, Dalibard J, and Spielman I 2019 Rev. Mod. Phys. 91 015005
[52] Lu Y H, Wang B Z, and Liu X J 2020 Sci. Bull. 65 2080
[53] Yue Y, de Melo C S, and Spielman I 2020 Phys. Rev. A 102 033325
[54] Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S et al. 2021 Science 372 271
[55] Lu M W, Reid G, Fritsch A, Piñeiro A M, and Spielman I B 2022 Phys. Rev. Lett. 129 040402
[56] Eckardt A, Weiss C, and Holthaus M 2005 Phys. Rev. Lett. 95 260404
[57] Zenesini A, Lignier H, Ciampini D, Morsch O, and Arimondo E 2009 Phys. Rev. Lett. 102 100403
[58] Song B, Dutta S, Bhave S, Yu J C, Carter E, Cooper N, and Schneider U 2022 Nat. Phys. 18 259
[59] Ejima S, Fehske H, Gebhard F, zu Münster K, Knap M, Arrigoni E, and von der L W 2012 Phys. Rev. A 85 053644
[60] Greiner M, Bloch I, Mandel O, Hänsch T W, and Esslinger T 2001 Phys. Rev. Lett. 87 160405
[61] Kastberg A, Phillips W D, Rolston S, Spreeuw R, and Jessen P S 1995 Phys. Rev. Lett. 74 1542
[62] Huang Q, Yao R, Liang L, Wang S, Zheng Q, Li D, Xiong W, Zhou X, Chen W, Chen X et al. 2021 Phys. Rev. Lett. 127 200601
[63] Miao J, Liu B, and Zheng W 2015 Phys. Rev. A 91 033404
[64] Capogrosso-Sansone B, Söyler Ş G, Prokof'ev N, and Svistunov B 2008 Phys. Rev. A 77 015602
Related articles from Frontiers Journals
[1] Jin-Yu Liu, Xiao-Qiong Wang, and Zhi-Fang Xu. Realization of $^{87}$Rb Bose–Einstein Condensates in Higher Bands of a Hexagonal Boron-Nitride Optical Lattice[J]. Chin. Phys. Lett., 2023, 40(8): 083701
[2] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 083701
[3] Yi Li, Jia-Hui Zhang, Feng Mei, Jie Ma, Liantuan Xiao, and Suotang Jia. Generalized Aubry–André–Harper Models in Optical Superlattices[J]. Chin. Phys. Lett., 2022, 39(6): 083701
[4] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 083701
[5] Shifeng Yang, Tianwei Zhou, Chen Li, Kaixiang Yang, Yueyang Zhai, Xuguang Yue, Xuzong Chen. Superfluid-Mott-Insulator Transition in an Optical Lattice with Adjustable Ensemble-Averaged Filling Factors[J]. Chin. Phys. Lett., 2020, 37(4): 083701
[6] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 083701
[7] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 083701
[8] Ben-quan Lu, Yebing Wang, Yang Guo, Qinfang Xu, Mojuan Yin, Jiguang Li, Hong Chang. Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom[J]. Chin. Phys. Lett., 2018, 35(4): 083701
[9] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, L.-M. Duan. Probe Knots and Hopf Insulators with Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(1): 083701
[10] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 083701
[11] Dong Hu, Lin-Xiao Niu, Jia-Hua Zhang, Xin-Hao Zou, Shu-Yang Cao, Xiao-Ji Zhou. Coupled Two-Dimensional Atomic Oscillation in an Anharmonic Trap[J]. Chin. Phys. Lett., 2017, 34(7): 083701
[12] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 083701
[13] Qiang Wang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li, Zhan-Jun Fang. Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2016, 33(10): 083701
[14] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 083701
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 083701
Viewed
Full text


Abstract