Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 077401    DOI: 10.1088/0256-307X/40/7/077401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Possible Superconductivity in Biphenylene
Jiacheng Ye1, Jun Li2*, DingYong Zhong1, and Dao-Xin Yao1,3*
1State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
2Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
3International Quantum Academy, Shenzhen 518048, China
Cite this article:   
Jiacheng Ye, Jun Li, DingYong Zhong et al  2023 Chin. Phys. Lett. 40 077401
Download: PDF(2706KB)   PDF(mobile)(2720KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new two-dimensional allotrope of carbon known as biphenylene has been synthesized. Building on previous research investigating the superconductivity of octagraphene with a square-octagon structure, we conduct a systematic study on possible superconductivity of biphenylene with partial square-octagon structure. First-principle calculations are used to fit the tight-binding model of the material and to estimate its superconductivity. We find that the conventional superconducting transition temperature $T_{\rm c}$ based on electron-phonon interaction is 3.02 K, while the unconventional $T_{\rm c}$ primarily caused by spin fluctuation is 1.7 K. We hypothesize that the remaining hexagonal $C_6$ structure of biphenylene may not be conducive to the formation of perfect Fermi nesting, leading to a lower $T_{\rm c}$. The superconducting properties of this material fall between those of graphene and octagraphene, and it lays a foundation for achieving high-temperature superconductivity in carbon-based materials.
Received: 13 April 2023      Published: 06 July 2023
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.20.Mn (Nonconventional mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/077401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/077401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiacheng Ye
Jun Li
DingYong Zhong
and Dao-Xin Yao
[1] Narita N, Nagai S, Suzuki S, and Nakao K 1998 Phys. Rev. B 58 11009
[2] Enyashin A N and Ivanovskii A L 2011 Phys. Status Solidi B 248 1879
[3] Crespi V H, Benedict L X, Cohen M L, and Louie S G 1996 Phys. Rev. B 53 R13303
[4] Deza M, Fowler P W, Shtogrin M, and Vietze K 2000 J. Chem. Inf. Comput. Sci. 40 1325
[5] Bucknum M J and Castro E A 2008 Solid State Sci. 10 1245
[6] Liu Y, Wang G, Huang Q, Guo L, and Chen X 2012 Phys. Rev. Lett. 108 225505
[7] Kang Y T, Lu C, Yang F, and Yao D X 2019 Phys. Rev. B 99 184506
[8] de Crasto L F, Ferreira G J, and Miwa R H 2019 Phys. Chem. Chem. Phys. 21 22344
[9] Fan Q T, Yan L H, Tripp M W, Krejci O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, and Gottfried J M 2021 Science 372 852
[10] Hamed M A, Zarghami D M, Molaie F, Fooladapanjeh S, Farzadian O, and Spitas C 2022 Comput. Mater. Sci. 214 111761
[11] Liu G, Chen T, Li X, Xu Z, and Xiao X 2022 Appl. Surf. Sci. 599 153993
[12] Tong Z, Pecchia A, Yam C, Dumitrica T, and Frauenheim T 2022 Adv. Energy Mater. 12 2200657
[13] Veeravenkata H P and Jain A 2021 Carbon 183 893
[14] Luo Y, Ren C, Xu Y, Yu J, Wang S, and Sun M 2021 Sci. Rep. 11 19008
[15] Ren K, Shu H, Huo W, Cui Z, and Xu Y 2022 Nanotechnology 33 345701
[16] Xing N, Liu Z, Wang Z, Gao Y, Li Q, and Wang H 2022 Phys. Chem. Chem. Phys. 24 27474
[17] Feng Z, Ma T, Li R, Zhu M, Shi D, Tang Y, and Dai X 2022 Mol. Catal. 530 112579
[18] Farzadian O, Dehaghani M Z, Kostas K V, Mashhadzadeh A H, and Spitas C 2022 Nanotechnology 33 355705
[19] Zarghami D M, Farzadian O, Kostas K V, Molaei F, Spitas C, and Hamed M A 2022 Physica E 144 115411
[20] Black-Schaffer A M and Honerkamp C 2014 J. Phys.: Condens. Matter 26 423201
[21] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[22] Ma T X, Yang F, Huang Z B, and Lin H Q 2017 Sci. Rep. 7 19
[23] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059
[24] Li J, Jin S, Yang F, and Yao D X 2020 Phys. Rev. B 102 174509
[25] Li J and Yao D X 2022 Chin. Phys. B 31 017403
[26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[28] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[29] Blöchl P E 1994 Phys. Rev. B 50 17953
[30] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Giannozzi P, Baroni S, and Bonini N 2009 J. Phys.: Condens. Matter 21 395502
[32] Piscanec S, Lazzeri M, Mauri F, Ferrari A C, and Robertson J 2004 Phys. Rev. Lett. 93 185503
[33] Liu P F, Li J, Zhang C, Tu X H, Zhang J, Zhang P, Wang B T, and Singh D J 2021 Phys. Rev. B 104 235422
[34] Parr R G, Craig D P, and Ross I G 1950 J. Chem. Phys. 18 1561
[35] Castro N A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109
[36] Schüler M, Rösner M, Wehling T O, Lichtenstein A I, and Katsnelson M I 2013 Phys. Rev. Lett. 111 036601
[37] Shibayama Y, Sato H, Enoki T, and Endo M 2000 Phys. Rev. Lett. 84 1744
[38] López-Sancho M P, de Juan F, and Vozmediano M A H 2009 Phys. Rev. B 79 075413
[39] Wehling T O, Şaşıoğlu E, Friedrich C, Lichtenstein A I, Katsnelson M I, and Blügel S 2011 Phys. Rev. Lett. 106 236805
[40] Vardeny Z and Tauc J 1985 Phys. Rev. Lett. 54 1844
[41] Baeriswyl D, Campbell D K, and Mazumdar S 1986 Phys. Rev. Lett. 56 1509
[42] Şaşıoğlu E, Friedrich C, and Blügel S 2011 Phys. Rev. B 83 121101
[43] Liu F, Liu C C, Wu K, Yang F, and Yao Y 2013 Phys. Rev. Lett. 111 066804
[44] Liu Y B, Zhang Y, Chen W Q, and Yang F 2023 Phys. Rev. B 107 014501
[45] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[46] Gu Q Y, Xing D Y, and Sun J 2019 Chin. Phys. Lett. 36 097401
Related articles from Frontiers Journals
[1] Ze-Long Wang, Rui-Ying Mao, Da Wang, and Qiang-Hua Wang. Effect of Anisotropic Impurity Scattering in D-Wave Superconductors[J]. Chin. Phys. Lett., 2023, 40(5): 077401
[2] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 077401
[3] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 077401
[4] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 077401
[5] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 077401
[6] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 077401
[7] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 077401
[8] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 077401
[9] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 077401
[10] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 077401
[11] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 077401
[12] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 077401
[13] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 077401
[14] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 077401
[15] ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren. Intra-Valley Spin-Triplet p+ip Superconducting Pairing in Lightly Doped Graphene[J]. Chin. Phys. Lett., 2013, 30(1): 077401
Viewed
Full text


Abstract