CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Possible Superconductivity in Biphenylene |
Jiacheng Ye1, Jun Li2*, DingYong Zhong1, and Dao-Xin Yao1,3* |
1State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China 2Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China 3International Quantum Academy, Shenzhen 518048, China
|
|
Cite this article: |
Jiacheng Ye, Jun Li, DingYong Zhong et al 2023 Chin. Phys. Lett. 40 077401 |
|
|
Abstract A new two-dimensional allotrope of carbon known as biphenylene has been synthesized. Building on previous research investigating the superconductivity of octagraphene with a square-octagon structure, we conduct a systematic study on possible superconductivity of biphenylene with partial square-octagon structure. First-principle calculations are used to fit the tight-binding model of the material and to estimate its superconductivity. We find that the conventional superconducting transition temperature $T_{\rm c}$ based on electron-phonon interaction is 3.02 K, while the unconventional $T_{\rm c}$ primarily caused by spin fluctuation is 1.7 K. We hypothesize that the remaining hexagonal $C_6$ structure of biphenylene may not be conducive to the formation of perfect Fermi nesting, leading to a lower $T_{\rm c}$. The superconducting properties of this material fall between those of graphene and octagraphene, and it lays a foundation for achieving high-temperature superconductivity in carbon-based materials.
|
|
Received: 13 April 2023
Published: 06 July 2023
|
|
PACS: |
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
74.20.Mn
|
(Nonconventional mechanisms)
|
|
|
|
|
[1] | Narita N, Nagai S, Suzuki S, and Nakao K 1998 Phys. Rev. B 58 11009 |
[2] | Enyashin A N and Ivanovskii A L 2011 Phys. Status Solidi B 248 1879 |
[3] | Crespi V H, Benedict L X, Cohen M L, and Louie S G 1996 Phys. Rev. B 53 R13303 |
[4] | Deza M, Fowler P W, Shtogrin M, and Vietze K 2000 J. Chem. Inf. Comput. Sci. 40 1325 |
[5] | Bucknum M J and Castro E A 2008 Solid State Sci. 10 1245 |
[6] | Liu Y, Wang G, Huang Q, Guo L, and Chen X 2012 Phys. Rev. Lett. 108 225505 |
[7] | Kang Y T, Lu C, Yang F, and Yao D X 2019 Phys. Rev. B 99 184506 |
[8] | de Crasto L F, Ferreira G J, and Miwa R H 2019 Phys. Chem. Chem. Phys. 21 22344 |
[9] | Fan Q T, Yan L H, Tripp M W, Krejci O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, and Gottfried J M 2021 Science 372 852 |
[10] | Hamed M A, Zarghami D M, Molaie F, Fooladapanjeh S, Farzadian O, and Spitas C 2022 Comput. Mater. Sci. 214 111761 |
[11] | Liu G, Chen T, Li X, Xu Z, and Xiao X 2022 Appl. Surf. Sci. 599 153993 |
[12] | Tong Z, Pecchia A, Yam C, Dumitrica T, and Frauenheim T 2022 Adv. Energy Mater. 12 2200657 |
[13] | Veeravenkata H P and Jain A 2021 Carbon 183 893 |
[14] | Luo Y, Ren C, Xu Y, Yu J, Wang S, and Sun M 2021 Sci. Rep. 11 19008 |
[15] | Ren K, Shu H, Huo W, Cui Z, and Xu Y 2022 Nanotechnology 33 345701 |
[16] | Xing N, Liu Z, Wang Z, Gao Y, Li Q, and Wang H 2022 Phys. Chem. Chem. Phys. 24 27474 |
[17] | Feng Z, Ma T, Li R, Zhu M, Shi D, Tang Y, and Dai X 2022 Mol. Catal. 530 112579 |
[18] | Farzadian O, Dehaghani M Z, Kostas K V, Mashhadzadeh A H, and Spitas C 2022 Nanotechnology 33 355705 |
[19] | Zarghami D M, Farzadian O, Kostas K V, Molaei F, Spitas C, and Hamed M A 2022 Physica E 144 115411 |
[20] | Black-Schaffer A M and Honerkamp C 2014 J. Phys.: Condens. Matter 26 423201 |
[21] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 |
[22] | Ma T X, Yang F, Huang Z B, and Lin H Q 2017 Sci. Rep. 7 19 |
[23] | Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059 |
[24] | Li J, Jin S, Yang F, and Yao D X 2020 Phys. Rev. B 102 174509 |
[25] | Li J and Yao D X 2022 Chin. Phys. B 31 017403 |
[26] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 |
[27] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[28] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 |
[29] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[30] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[31] | Giannozzi P, Baroni S, and Bonini N 2009 J. Phys.: Condens. Matter 21 395502 |
[32] | Piscanec S, Lazzeri M, Mauri F, Ferrari A C, and Robertson J 2004 Phys. Rev. Lett. 93 185503 |
[33] | Liu P F, Li J, Zhang C, Tu X H, Zhang J, Zhang P, Wang B T, and Singh D J 2021 Phys. Rev. B 104 235422 |
[34] | Parr R G, Craig D P, and Ross I G 1950 J. Chem. Phys. 18 1561 |
[35] | Castro N A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109 |
[36] | Schüler M, Rösner M, Wehling T O, Lichtenstein A I, and Katsnelson M I 2013 Phys. Rev. Lett. 111 036601 |
[37] | Shibayama Y, Sato H, Enoki T, and Endo M 2000 Phys. Rev. Lett. 84 1744 |
[38] | López-Sancho M P, de Juan F, and Vozmediano M A H 2009 Phys. Rev. B 79 075413 |
[39] | Wehling T O, Şaşıoğlu E, Friedrich C, Lichtenstein A I, Katsnelson M I, and Blügel S 2011 Phys. Rev. Lett. 106 236805 |
[40] | Vardeny Z and Tauc J 1985 Phys. Rev. Lett. 54 1844 |
[41] | Baeriswyl D, Campbell D K, and Mazumdar S 1986 Phys. Rev. Lett. 56 1509 |
[42] | Şaşıoğlu E, Friedrich C, and Blügel S 2011 Phys. Rev. B 83 121101 |
[43] | Liu F, Liu C C, Wu K, Yang F, and Yao Y 2013 Phys. Rev. Lett. 111 066804 |
[44] | Liu Y B, Zhang Y, Chen W Q, and Yang F 2023 Phys. Rev. B 107 014501 |
[45] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 |
[46] | Gu Q Y, Xing D Y, and Sun J 2019 Chin. Phys. Lett. 36 097401 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|