GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Search for Ultralight Dark Matter with a Frequency Adjustable Diamagnetic Levitated Sensor |
Rui Li1,2, Shaochun Lin1,2, Liang Zhang1,2, Changkui Duan1,2, Pu Huang3*, and Jiangfeng Du1,2 |
1CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 3National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Rui Li, Shaochun Lin, Liang Zhang et al 2023 Chin. Phys. Lett. 40 069502 |
|
|
Abstract Among several dark matter candidates, bosonic ultra-light (sub-meV) dark matter is well motivated because it could couple to the Standard Model and induce new forces. Previous MICROSCOPE and Eöt–Wash torsion experiments have achieved high accuracy in the sub-1 Hz region. However, at higher frequencies there is still a lack of relevant experimental research. We propose an experimental scheme based on the diamagnetic levitated micromechanical oscillator, one of the most sensitive sensors for acceleration sensitivity below the kilohertz scale. In order to improve the measurement range, we utilize a sensor whose resonance frequency $\omega_0$ could be adjusted from 0.1 Hz to 100 Hz. The limits of the coupling constant $g_{\scriptscriptstyle B-L}$ are improved by more than 10 times compared to previous reports, and it may be possible to achieve higher accuracy by using the array of sensors in the future.
|
|
Received: 24 March 2023
Editors' Suggestion
Published: 01 June 2023
|
|
PACS: |
95.35.+d
|
(Dark matter)
|
|
85.70.Rp
|
(Magnetic levitation, propulsion and control devices)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
06.30.Gv
|
(Velocity, acceleration, and rotation)
|
|
|
|
|
[1] | Sofue Y and Rubin V 2001 Annu. Rev. Astron. Astrophys. 39 137 |
[2] | Massey R, Kitching T, and Richard J 2010 Rep. Prog. Phys. 73 086901 |
[3] | Markevitch M, Gonzalez A H, Clowe D, Vikhlinin A, Forman W, Jones C, Murray S, and Tucker W 2004 Astrophys. J. 606 819 |
[4] | Gianfranco B 2010 Particle Dark Matter: Observations, Models and Searches (Cambridge: Cambridge University Press) |
[5] | Tanabashi M, Hagiwara K, Hikasa K et al. (Particle Data Group Collaboration) 2018 Phys. Rev. D 98 030001 |
[6] | Irastorza I G and Redondo J 2018 Prog. Part. Nucl. Phys. 102 89 |
[7] | Hui L, Ostriker J P, Tremaine S, and Witten E 2017 Phys. Rev. D 95 043541 |
[8] | Bovy J, Prieto C A, Beers T C et al. 2012 Astrophys. J. 759 131 |
[9] | O'Hare C A J, McCabe C, Evans N W, Myeong G, and Belokurov V 2018 Phys. Rev. D 98 103006 |
[10] | Myeong G C, Evans N W, Belokurov V, Amorisco N C, and Koposov S E 2018 Mon. Not. R. Astron. Soc. 475 1537 |
[11] | Du N, Force N, Khatiwada R et al. (ADMX Collaboration) 2018 Phys. Rev. Lett. 120 151301 |
[12] | Backes K M, Palken D A, Kenany S A et al. 2021 Nature 590 238 |
[13] | Kwon O, Lee D, Chung W et al. 2021 Phys. Rev. Lett. 126 191802 |
[14] | Abel C, Ayres N J, Ban G et al. 2017 Phys. Rev. X 7 041034 |
[15] | Terrano W A, Adelberger E G, Hagedorn C A, and Heckel B R 2019 Phys. Rev. Lett. 122 231301 |
[16] | Smorra C, Stadnik Y, Blessing P et al. 2019 Nature 575 310 |
[17] | Kennedy C J, Oelker E, Robinson J M, Bothwell T, Kedar D, Milner W R, Marti G E, Derevianko A, and Ye J 2020 Phys. Rev. Lett. 125 201302 |
[18] | Arvanitaki A, Huang J W, and Van Tilburg K 2015 Phys. Rev. D 91 015015 |
[19] | Vermeulen S M, Relton P, Grote H et al. 2021 Nature 600 424 |
[20] | Carney D, Hook A, Liu Z, Taylor J M, and Zhao Y 2021 New J. Phys. 23 023041 |
[21] | Read J I 2014 J. Phys. G 41 063101 |
[22] | Clark J B, Lecocq F, Simmonds R W, Aumentado J, and Teufel J D 2017 Nature 541 191 |
[23] | Leng Y C, Li R, Kong X, Xie H, Zheng D, Yin P R, Xiong F, Wu T, Duan C K, Du Y W, Yin Z Q, Huang P, and Du J F 2021 Phys. Rev. Appl. 15 024061 |
[24] | Monteiro F, Li W, Afek G, Li C L, Mossman M, and Moore D C 2020 Phys. Rev. A 101 053835 |
[25] | Acernese F, Antonucci F, Aoudia S et al. 2010 Astropart. Phys. 33 182 |
[26] | Acernese F, Agathos M, Agatsuma K et al. 2015 Class. Quantum Grav. 32 024001 |
[27] | Zheng D, Leng Y, Kong X, Li R, Wang Z, Luo X, Zhao J, Duan C K, Huang P, Du J, Carlesso M, and Bassi A 2020 Phys. Rev. Res. 2 013057 |
[28] | Xiong F, Yin P, Wu T, Xie H, Li R, Leng Y, Li Y, Duan C, Kong X, Huang P, and Du J 2021 Phys. Rev. Appl. 16 L011003 |
[29] | Wagner T A, Schlamminger S, Gundlach J H, and Adelberger E G 2012 Class. Quantum Grav. 29 184002 |
[30] | Schlamminger S, Choi K Y, Wagner T A, Gundlach J H, and Adelberger E G 2008 Phys. Rev. Lett. 100 041101 |
[31] | Arvanitaki A, Dimopoulos S, and Van Tilburg K 2016 Phys. Rev. Lett. 116 031102 |
[32] | Hees A, Minazzoli O, Savalle E, Stadnik Y V, and Wolf P 2018 Phys. Rev. D 98 064051 |
[33] | Bergé J, Brax P, Métris G, Pernot-Borràs M, Touboul P, and Uzan J P 2018 Phys. Rev. Lett. 120 141101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|