CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Intrinsic Electronic Properties of BN-Encapsulated, van der Waals Contacted MoSe$_{2}$ Field-Effect Transistors |
Yinjiang Shao1, Jian Zhou1, Ning Xu1, Jian Chen1, Kenji Watanabe2, Takashi Taniguchi2, Yi Shi1, and Songlin Li1* |
1School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China 2National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
|
|
Cite this article: |
Yinjiang Shao, Jian Zhou, Ning Xu et al 2023 Chin. Phys. Lett. 40 068501 |
|
|
Abstract Two-dimensional (2D) semiconductors have attracted considerable interest for their unique physical properties. Here, we report the intrinsic cryogenic electronic transport properties in few-layer MoSe$_{2}$ field-effect transistors (FETs) that are fully encapsulated in ultraclean hexagonal boron nitride dielectrics and are simultaneously van der Waals contacted with gold electrodes. The FETs exhibit electronically favorable channel/dielectric interfaces with low densities of interfacial traps ($ < $ $10^{10}$ cm$^{-2}$), which lead to outstanding device characteristics at room temperature, including near-Boltzmann-limit subthreshold swings (65 mV/dec), high carrier mobilities (53–68 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$), and negligible scanning hystereses ($ < $ $15$ mV). The dependence of various contact-related parameters with temperature and carrier density is also systematically characterized to understand the van der Waals contacts between gold and MoSe$_{2}$. The results provide insightful information about the device physics in van der Waals contacted and encapsulated 2D FETs.
|
|
Received: 28 March 2023
Editors' Suggestion
Published: 16 May 2023
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
|
|
[1] | Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805 |
[2] | Zeng H L, Dai J F, Yao W, Xiao D, and Cui X D 2012 Nat. Nanotechnol. 7 490 |
[3] | Paik E Y, Zhang L, Burg G W, Gogna R, Tutuc E, and Deng H 2019 Nature 576 80 |
[4] | Chen D X, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, and Shi S F 2022 Nat. Phys. 18 1171 |
[5] | Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, and Pasupathy A N 2021 Nature 597 345 |
[6] | Jin C H, Tao Z, Li T X, Xu Y, Tang Y, Zhu J C, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J, and Mak K F 2021 Nat. Mater. 20 940 |
[7] | Zhang Z M, Wang Y M, Watanabe K, Taniguchi T, Ueno K, Tutuc E, and LeRoy B J 2020 Nat. Phys. 16 1093 |
[8] | Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P, and Javey A 2016 Science 354 99 |
[9] | Liu Y, Duan X, Shin H J, Park S, Huang Y, and Duan X 2021 Nature 591 43 |
[10] | Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y, and Ren T L 2022 Nature 603 259 |
[11] | Li S L, Tsukagoshi K, Orgiu E, and Samorì P 2016 Chem. Soc. Rev. 45 118 |
[12] | Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K, and Tutuc E 2018 Phys. Rev. B 97 201407 |
[13] | Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, and Wu J 2012 Nano Lett. 12 5576 |
[14] | Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, and Shen Z X 2014 Nat. Nanotechnol. 9 111 |
[15] | Chamlagain B, Li Q, Ghimire N J, Chuang H J, Perera M M, Tu H, Xu Y, Pan M, Xaio D, Yan J, Mandrus D, and Zhou Z 2014 ACS Nano 8 5079 |
[16] | Larentis S, Fallahazad B, and Tutuc E 2012 Appl. Phys. Lett. 101 223104 |
[17] | Chang Y H, Zhang W J, Zhu Y H, Han Y, Pu J, Chang J K, Hsu W T, Huang J K, Hsu C L, Chiu M H, Takenobu T, Li H, Wu C I, Chang W H, Wee A T S, and Li L J 2014 ACS Nano 8 8582 |
[18] | Scuri G, Zhou Y, High A A, Wild D S, Shu C, De Greve K, Jauregui L A, Taniguchi T, Watanabe K, Kim P, Lukin M D, and Park H 2018 Phys. Rev. Lett. 120 037402 |
[19] | Zhang T Y, Zhao S W, Wang A R, Xiong Z R, Liu Y J, Xi M, Li S L, Lei H C, Han Z V, and Wang F 2022 Adv. Funct. Mater. 32 2204779 |
[20] | Xu S Q, Wu Z F, Lu H H, Han Y, Long G, Chen X L, Han T, Ye W, Wu Y, Lin J, Shen J, Cai Y, He Y, Zhang F, Lortz R, Cheng C, and Wang N 2016 2D Mater. 3 021007 |
[21] | Liang B, Wang A, Zhou J, Ju S, Chen J, Watanabe K, Taniguchi T, Shi Y, and Li S 2022 ACS Appl. Mater. & Interfaces 14 18697 |
[22] | Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614 |
[23] | Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, de Vasconcellos S M, and Bratschitsch R 2013 Opt. Express 21 4908 |
[24] | Yin J D, Chen H, Lu W, Liu M L, Li I L, Zhang M, Zhang W, Wang J, Xu Z, Yan P, Liu W, and Ruan S 2017 Nanotechnology 28 484001 |
[25] | Illarionov Y Y, Rzepa G, Waltl M, Knobloch T, Grill A, Furchi M M, Mueller T, and Grasser T 2016 2D Mater. 3 035004 |
[26] | Sze S M and Ng K K 2007 Physics of Semiconductor Devices 3rd edn (New Jersey: John Wiley & Sons) |
[27] | Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W, and Kim K 2012 Nat. Commun. 3 1011 |
[28] | Haratipour N, Namgung S, Oh S H, and Koester S J 2016 ACS Nano 10 3791 |
[29] | Luo P F, Liu C, Lin J, Duan X P, Zhang W, Ma C, Lv Y, Zou X, Liu Y, Schwierz F, Qin W, Liao L, He J, and Liu X 2022 Nat. Electron. 5 849 |
[30] | Zhang L, Li J, Zhang X W, Jiang X Y, and Zhang Z L 2009 Appl. Phys. Lett. 95 072112 |
[31] | Wang J L, Li S L, Zou X, Ho J, Liao L, Xiao X, Jiang C, Hu W, Wang J L, and Li J C 2015 Small 11 5932 |
[32] | Choi K, Raza S R A, Lee H S, Jeon P J, Pezeshki A, Min S W, Kim J S, Yoon W, Ju S Y, Lee K, and Im S 2015 Nanoscale 7 5617 |
[33] | Park Y, Baac H W, Heo J, and Yoo G 2016 Appl. Phys. Lett. 108 083102 |
[34] | Mitta S B, Choi M S, Nipane A, Ali F, Kim C, Teherani J T, Hone J, and Yoo W J 2020 2D Mater. 8 012002 |
[35] | Movva H C P, Rai A, Kang S, Kim K, Fallahazad B, Taniguchi T, Watanabe K, Tutuc E, and Banerjee S K 2015 ACS Nano 9 10402 |
[36] | Radisavljevic B and Kis A 2013 Nat. Mater. 12 815 |
[37] | Li S L, Wakabayashi K, Xu Y, Nakaharai S, Komatsu K, Li W W, Lin Y F, Aparecido-Ferreira A, and Tsukagoshi K 2013 Nano Lett. 13 3546 |
[38] | Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, and Hone J 2015 Nat. Nanotechnol. 10 534 |
[39] | Fivaz R and Mooser E 1967 Phys. Rev. 163 743 |
[40] | Ghiasi T S, Quereda J, and van Wees B J 2018 2D Mater. 6 015002 |
[41] | Lee H, Kim J H, and Lee C J 2016 Appl. Phys. Lett. 109 222105 |
[42] | Liao W G, Wei W, Tong Y, Chim W K, and Zhu C 2017 Appl. Phys. Lett. 111 082105 |
[43] | Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, and Yoo W J 2017 ACS Nano 11 1588 |
[44] | Yu L L, Lee Y H, Ling X, Santos E J G, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H, and Palacios T 2014 Nano Lett. 14 3055 |
[45] | Murrmann H and Widmann D 1969 IEEE Trans. Electron Devices 16 1022 |
[46] | Li S L, Komatsu K, Nakaharai S, Lin Y F, Yamamoto M, Duan X, and Tsukagoshi K 2014 ACS Nano 8 12836 |
[47] | Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, and Ye P D 2014 Nano Lett. 14 6275 |
[48] | Ovchinnikov D, Allain A, Huang Y S, Dumcenco D, and Kis A 2014 ACS Nano 8 8174 |
[49] | Kumar J, Kuroda M A, Bellus M Z, Han S J, and Chiu H Y 2015 Appl. Phys. Lett. 106 123508 |
[50] | Somvanshi D, Ber E, Bailey C S, Pop E, and Yalon E 2020 ACS Appl. Mater. & Interfaces 12 36355 |
[51] | Ju S H, Qiu L P, Zhou J, Liang B X, Wang W F, Li T T, Chen J, Wang X R, Shi Y, and Li S L 2022 Appl. Phys. Lett. 120 253505 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|