Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 068501    DOI: 10.1088/0256-307X/40/6/068501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Intrinsic Electronic Properties of BN-Encapsulated, van der Waals Contacted MoSe$_{2}$ Field-Effect Transistors
Yinjiang Shao1, Jian Zhou1, Ning Xu1, Jian Chen1, Kenji Watanabe2, Takashi Taniguchi2, Yi Shi1, and Songlin Li1*
1School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
2National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Cite this article:   
Yinjiang Shao, Jian Zhou, Ning Xu et al  2023 Chin. Phys. Lett. 40 068501
Download: PDF(3397KB)   PDF(mobile)(3441KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) semiconductors have attracted considerable interest for their unique physical properties. Here, we report the intrinsic cryogenic electronic transport properties in few-layer MoSe$_{2}$ field-effect transistors (FETs) that are fully encapsulated in ultraclean hexagonal boron nitride dielectrics and are simultaneously van der Waals contacted with gold electrodes. The FETs exhibit electronically favorable channel/dielectric interfaces with low densities of interfacial traps ($ < $ $10^{10}$ cm$^{-2}$), which lead to outstanding device characteristics at room temperature, including near-Boltzmann-limit subthreshold swings (65 mV/dec), high carrier mobilities (53–68 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$), and negligible scanning hystereses ($ < $ $15$ mV). The dependence of various contact-related parameters with temperature and carrier density is also systematically characterized to understand the van der Waals contacts between gold and MoSe$_{2}$. The results provide insightful information about the device physics in van der Waals contacted and encapsulated 2D FETs.
Received: 28 March 2023      Editors' Suggestion Published: 16 May 2023
PACS:  85.30.Tv (Field effect devices)  
  85.35.-p (Nanoelectronic devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/068501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/068501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yinjiang Shao
Jian Zhou
Ning Xu
Jian Chen
Kenji Watanabe
Takashi Taniguchi
Yi Shi
and Songlin Li
[1] Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[2] Zeng H L, Dai J F, Yao W, Xiao D, and Cui X D 2012 Nat. Nanotechnol. 7 490
[3] Paik E Y, Zhang L, Burg G W, Gogna R, Tutuc E, and Deng H 2019 Nature 576 80
[4] Chen D X, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, and Shi S F 2022 Nat. Phys. 18 1171
[5] Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, and Pasupathy A N 2021 Nature 597 345
[6] Jin C H, Tao Z, Li T X, Xu Y, Tang Y, Zhu J C, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J, and Mak K F 2021 Nat. Mater. 20 940
[7] Zhang Z M, Wang Y M, Watanabe K, Taniguchi T, Ueno K, Tutuc E, and LeRoy B J 2020 Nat. Phys. 16 1093
[8] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P, and Javey A 2016 Science 354 99
[9] Liu Y, Duan X, Shin H J, Park S, Huang Y, and Duan X 2021 Nature 591 43
[10] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y, and Ren T L 2022 Nature 603 259
[11] Li S L, Tsukagoshi K, Orgiu E, and Samorì P 2016 Chem. Soc. Rev. 45 118
[12] Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K, and Tutuc E 2018 Phys. Rev. B 97 201407
[13] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, and Wu J 2012 Nano Lett. 12 5576
[14] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, and Shen Z X 2014 Nat. Nanotechnol. 9 111
[15] Chamlagain B, Li Q, Ghimire N J, Chuang H J, Perera M M, Tu H, Xu Y, Pan M, Xaio D, Yan J, Mandrus D, and Zhou Z 2014 ACS Nano 8 5079
[16] Larentis S, Fallahazad B, and Tutuc E 2012 Appl. Phys. Lett. 101 223104
[17] Chang Y H, Zhang W J, Zhu Y H, Han Y, Pu J, Chang J K, Hsu W T, Huang J K, Hsu C L, Chiu M H, Takenobu T, Li H, Wu C I, Chang W H, Wee A T S, and Li L J 2014 ACS Nano 8 8582
[18] Scuri G, Zhou Y, High A A, Wild D S, Shu C, De Greve K, Jauregui L A, Taniguchi T, Watanabe K, Kim P, Lukin M D, and Park H 2018 Phys. Rev. Lett. 120 037402
[19] Zhang T Y, Zhao S W, Wang A R, Xiong Z R, Liu Y J, Xi M, Li S L, Lei H C, Han Z V, and Wang F 2022 Adv. Funct. Mater. 32 2204779
[20] Xu S Q, Wu Z F, Lu H H, Han Y, Long G, Chen X L, Han T, Ye W, Wu Y, Lin J, Shen J, Cai Y, He Y, Zhang F, Lortz R, Cheng C, and Wang N 2016 2D Mater. 3 021007
[21] Liang B, Wang A, Zhou J, Ju S, Chen J, Watanabe K, Taniguchi T, Shi Y, and Li S 2022 ACS Appl. Mater. & Interfaces 14 18697
[22] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614
[23] Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, de Vasconcellos S M, and Bratschitsch R 2013 Opt. Express 21 4908
[24] Yin J D, Chen H, Lu W, Liu M L, Li I L, Zhang M, Zhang W, Wang J, Xu Z, Yan P, Liu W, and Ruan S 2017 Nanotechnology 28 484001
[25] Illarionov Y Y, Rzepa G, Waltl M, Knobloch T, Grill A, Furchi M M, Mueller T, and Grasser T 2016 2D Mater. 3 035004
[26]Sze S M and Ng K K 2007 Physics of Semiconductor Devices 3rd edn (New Jersey: John Wiley & Sons)
[27] Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W, and Kim K 2012 Nat. Commun. 3 1011
[28] Haratipour N, Namgung S, Oh S H, and Koester S J 2016 ACS Nano 10 3791
[29] Luo P F, Liu C, Lin J, Duan X P, Zhang W, Ma C, Lv Y, Zou X, Liu Y, Schwierz F, Qin W, Liao L, He J, and Liu X 2022 Nat. Electron. 5 849
[30] Zhang L, Li J, Zhang X W, Jiang X Y, and Zhang Z L 2009 Appl. Phys. Lett. 95 072112
[31] Wang J L, Li S L, Zou X, Ho J, Liao L, Xiao X, Jiang C, Hu W, Wang J L, and Li J C 2015 Small 11 5932
[32] Choi K, Raza S R A, Lee H S, Jeon P J, Pezeshki A, Min S W, Kim J S, Yoon W, Ju S Y, Lee K, and Im S 2015 Nanoscale 7 5617
[33] Park Y, Baac H W, Heo J, and Yoo G 2016 Appl. Phys. Lett. 108 083102
[34] Mitta S B, Choi M S, Nipane A, Ali F, Kim C, Teherani J T, Hone J, and Yoo W J 2020 2D Mater. 8 012002
[35] Movva H C P, Rai A, Kang S, Kim K, Fallahazad B, Taniguchi T, Watanabe K, Tutuc E, and Banerjee S K 2015 ACS Nano 9 10402
[36] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[37] Li S L, Wakabayashi K, Xu Y, Nakaharai S, Komatsu K, Li W W, Lin Y F, Aparecido-Ferreira A, and Tsukagoshi K 2013 Nano Lett. 13 3546
[38] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, and Hone J 2015 Nat. Nanotechnol. 10 534
[39] Fivaz R and Mooser E 1967 Phys. Rev. 163 743
[40] Ghiasi T S, Quereda J, and van Wees B J 2018 2D Mater. 6 015002
[41] Lee H, Kim J H, and Lee C J 2016 Appl. Phys. Lett. 109 222105
[42] Liao W G, Wei W, Tong Y, Chim W K, and Zhu C 2017 Appl. Phys. Lett. 111 082105
[43] Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, and Yoo W J 2017 ACS Nano 11 1588
[44] Yu L L, Lee Y H, Ling X, Santos E J G, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H, and Palacios T 2014 Nano Lett. 14 3055
[45] Murrmann H and Widmann D 1969 IEEE Trans. Electron Devices 16 1022
[46] Li S L, Komatsu K, Nakaharai S, Lin Y F, Yamamoto M, Duan X, and Tsukagoshi K 2014 ACS Nano 8 12836
[47] Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, and Ye P D 2014 Nano Lett. 14 6275
[48] Ovchinnikov D, Allain A, Huang Y S, Dumcenco D, and Kis A 2014 ACS Nano 8 8174
[49] Kumar J, Kuroda M A, Bellus M Z, Han S J, and Chiu H Y 2015 Appl. Phys. Lett. 106 123508
[50] Somvanshi D, Ber E, Bailey C S, Pop E, and Yalon E 2020 ACS Appl. Mater. & Interfaces 12 36355
[51] Ju S H, Qiu L P, Zhou J, Liang B X, Wang W F, Li T T, Chen J, Wang X R, Shi Y, and Li S L 2022 Appl. Phys. Lett. 120 253505
Related articles from Frontiers Journals
[1] Binxi Liang, Luhao Liu, Jiachen Tang, Jian Chen, Yi Shi, and Songlin Li. Enhancement of Carrier Mobility in Semiconductor Nanostructures by Carrier Distribution Engineering[J]. Chin. Phys. Lett., 2023, 40(5): 068501
[2] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 068501
[3] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 068501
[4] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 068501
[5] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 068501
[6] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 068501
[7] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 068501
[8] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 068501
[9] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 068501
[10] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 068501
[11] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 068501
[12] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 068501
[13] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 068501
[14] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 068501
[15] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 068501
Viewed
Full text


Abstract