CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Near-Field Radiative Heat Transfer between Disordered Multilayer Systems |
Peng Tian1†, Wenxuan Ge1†, Songsong Li1, Lei Gao1,2, Jianhua Jiang1, and Yadong Xu1,3* |
1Institute of Theoretical and Applied Physics, School of Physical Science and Technology, Soochow University, Suzhou 215006, China 2Department of Photoelectric Science and Energy Engineering, Suzhou City University, Suzhou 215104, China 3Key Lab of Modern Optical Technologies of Ministry of Education, Soochow University, Suzhou 215006, China
|
|
Cite this article: |
Peng Tian, Wenxuan Ge, Songsong Li et al 2023 Chin. Phys. Lett. 40 067802 |
|
|
Abstract Near-field radiative heat transfer (NFRHT) research is an important research project after a major breakthrough in nanotechnology. Based on the multilayer structure, we find that due to the existence of inherent losses, the decoupling of hyperbolic modes (HMs) after changing the filling ratio leads to suppression of heat flow near the surface mode resonance frequency. It complements the physical landscape of enhancement of near-field radiative heat transfer by HMs and more surface states supported by multiple surfaces. More importantly, considering the difficulty of accurate preparation at the nanoscale, we introduce the disorder factor to describe the magnitude of the random variation of the layer thickness of the multilayer structure and then explore the effect on heat transfer when the layer thickness is slightly different from the exact value expected. We find that the near-field radiative heat flux decreases gradually as the disorder increases because of interlayer energy localization. However, the reduction in heat transfer does not exceed an order of magnitude, although the disorder is already very large. At the same time, the regulation effect of the disorder on NFRHT is close to that of the same degree of filling ratio, which highlights the importance of disordered systems. This work qualitatively describes the effect of disorder on heat transfer and provides instructive data for the fabrication of NFRHT devices.
|
|
Received: 28 March 2023
Published: 29 May 2023
|
|
PACS: |
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
44.40.+a
|
(Thermal radiation)
|
|
42.68.Ay
|
(Propagation, transmission, attenuation, and radiative transfer)
|
|
73.21.Ac
|
(Multilayers)
|
|
|
|
|
[1] | Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301 |
[2] | Ordonez-Miranda J, Ezzahri Y, Tiburcio-Moreno J A et al. 2019 Phys. Rev. Lett. 123 025901 |
[3] | Polder D and Van Hove M 1971 Phys. Rev. B 4 3303 |
[4] | Guha B, Otey C, Poitras C B et al. 2012 Nano Lett. 12 4546 |
[5] | Joulain K, Mulet J P, Marquier F et al. 2005 Surf. Sci. Rep. 57 59 |
[6] | Liu X L, Wang L P, and Zhang Z M 2015 Nanoscale Microscale Thermophys. Eng. 19 98 |
[7] | Cahill D G, Ford W K, Goodson K E et al. 2003 J. Appl. Phys. 93 793 |
[8] | Ottens R S, Quetschke V, Wise S et al. 2011 Phys. Rev. Lett. 107 014301 |
[9] | Hu L, Narayanaswamy A, Chen X et al. 2008 Appl. Phys. Lett. 92 133106 |
[10] | Kim K, Song B, Fernández-Hurtado V et al. P 2015 Nature 528 387 |
[11] | Shen S, Narayanaswamy A, and Chen G 2009 Nano Lett. 9 2909 |
[12] | Rousseau E, Siria A, Jourdan G et al. 2009 Nat. Photon. 3 514 |
[13] | Fiorino A, Zhu L, Thompson D et al. 2018 Nat. Nanotechnol. 13 806 |
[14] | Bhatt G R, Zhao B, Roberts S et al. 2020 Nat. Commun. 11 2545 |
[15] | Mittapally R, Lee B, Zhu L et al. 2021 Nat. Commun. 12 4364 |
[16] | Inoue T, Koyama T, Kang D D et al. 2019 Nano Lett. 19 3948 |
[17] | Fiorino A, Thompson D, Zhu L et al. 2018 ACS Nano 12 5774 |
[18] | Landrieux S, Ben-Abdallah P, and Messina R 2022 Appl. Phys. Lett. 120 143502 |
[19] | Xu G D, Sun J, Mao H M et al. 2018 J. Appl. Phys. 124 183104 |
[20] | Song B, Fiorino A, Meyhofer E et al. 2015 AIP Adv. 5 053503 |
[21] | Greffet J J 2017 C. R. Phys. 18 24 |
[22] | Francoeur M, Mengüç M P, and Vaillon R 2008 Appl. Phys. Lett. 93 043109 |
[23] | Ben-Abdallah P, Joulain K, and Pryamikov A 2010 Appl. Phys. Lett. 96 143117 |
[24] | Biehs S A, Ben-Abdallah P, Rosa F S S et al. 2011 Opt. Express 19 A1088 |
[25] | Rodriguez A W, Ilic O, Bermel P et al. 2011 Phys. Rev. Lett. 107 114302 |
[26] | Dai J, Dyakov S A, and Yan M 2015 Phys. Rev. B 92 035419 |
[27] | Guérout R, Lussange J, Rosa F S S et al. 2012 J. Phys.: Conf. Ser. 395 012154 |
[28] | Fernández-Hurtado V, García-Vidal F J, Fan S et al. 2017 Phys. Rev. Lett. 118 203901 |
[29] | Joulain K, Drevillon J, and Ben-Abdallah P 2010 Phys. Rev. B 81 165119 |
[30] | Ikeda T, Ito K, and Iizuka H 2017 J. Appl. Phys. 121 013106 |
[31] | Jin S, Lim M, Lee S et al. 2016 Opt. Express 24 A635 |
[32] | Miller O D, Johnson S G, and Rodriguez A W 2014 Phys. Rev. Lett. 112 157402 |
[33] | Biehs S A and Ben-Abdallah P 2017 Z. Naturforsch. A 72 115 |
[34] | Biehs S A, Tschikin M, Messina R et al. 2013 Appl. Phys. Lett. 102 131106 |
[35] | Iizuka H and Fan S 2018 Phys. Rev. Lett. 120 063901 |
[36] | Gerber J A, Berweger S, O'Callahan B T et al. 2014 Phys. Rev. Lett. 113 055502 |
[37] | Zhang S B, Xu Y D, Chen H Y et al. 2020 Optica 7 687 |
[38] | Xu Y D, Gu C D, Hou B et al. 2013 Nat. Commun. 4 2561 |
[39] | Herzig S H, Kaminer I, Genack A Z et al. 2016 Nat. Commun. 7 12927 |
[40] | Li S S, Xu P, and Xu Y D 2021 J. Opt. 23 115101 |
[41] | Glytsis E N and Gaylord T K 1992 Appl. Opt. 31 4459 |
[42] | Raguin D H and Morris G M 1993 Appl. Opt. 32 1154 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|