CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Achieving 1.2 fm/Hz$^{1/2}$ Displacement Sensitivity with Laser Interferometry in Two-Dimensional Nanomechanical Resonators: Pathways towards Quantum-Noise-Limited Measurement at Room Temperature |
Jiankai Zhu1†, Luming Wang1†, Jiaqi Wu1†, Yachun Liang1, Fei Xiao1, Bo Xu1, Zejuan Zhang1, Xiulian Fan2, Yu Zhou2*, Juan Xia1*, and Zenghui Wang1,3* |
1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China 2School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China 3State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
|
|
Cite this article: |
Jiankai Zhu, Luming Wang, Jiaqi Wu et al 2023 Chin. Phys. Lett. 40 038102 |
|
|
Abstract Laser interferometry is an important technique for ultrasensitive detection of motion and displacement. We push the limit of laser interferometry through noise optimization and device engineering. The contribution of noises other than shot noise is reduced from 92.6% to 62.4%, demonstrating the possibility towards shot-noise-limited measurement. Using noise thermometry, we quantify the laser heating effect and determine the range of laser power values for room-temperature measurements. With detailed analysis and optimization of signal transduction, we achieve 1.2 fm/Hz$^{1/2}$ displacement measurement sensitivity at room temperature in two-dimensional (2D) CaNb$_{2}$O$_{6}$ nanomechanical resonators, the best value reported to date among all resonators based on 2D materials. Our work demonstrates a possible pathway towards quantum-noise-limited measurement at room temperature.
|
|
Received: 28 January 2022
Express Letter
Published: 20 February 2023
|
|
PACS: |
07.10.Cm
|
(Micromechanical devices and systems)
|
|
81.07.Oj
|
(Nanoelectromechanical systems (NEMS))
|
|
85.85.+j
|
(Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)
|
|
95.75.Kk
|
(Interferometry)
|
|
|
|
|
[1] | Kipnis N 2012 History of the Principle of Interference of Light (Birkhäuser) |
[2] | Michelson A A and Morley E W 1887 Am. J. Sci. 3 333 |
[3] | Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102 |
[4] | Weiss R 2018 Rev. Mod. Phys. 90 040501 |
[5] | Barish B C 2018 Rev. Mod. Phys. 90 040502 |
[6] | Thorne K S 2018 Rev. Mod. Phys. 90 040503 |
[7] | Rugar D, Budakian R, Mamin H J, and Chui B W 2004 Nature 430 329 |
[8] | Bachtold A, Moser J, and Dykman M I 2022 Rev. Mod. Phys. 94 045005 |
[9] | Xu B, Zhang P C, Zhu J K, Liu Z H, Eicher A, Zheng X Q, Lee J, Dash A, More S, Wu S, Wang Y N, Jia H, Naik A, Bachtold A, Yang R, Feng P X L, and Wang Z H 2022 ACS Nano 16 15545 |
[10] | Wang Z H, Fang J W, Zhang P C, and Yang R 2021 Sci. Chin. Inf. Sci. 64 206401 |
[11] | Nguyen C T C 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 251 |
[12] | O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, and Cleland A N 2010 Nature 464 697 |
[13] | Kotler S, Peterson G A, Shojaee E, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds R W, Aumentado J, and Teufel J D 2021 Science 372 622 |
[14] | Mercier de Lépinay L, Ockeloen-Korppi C F, Woolley M J, and Sillanpää M A 2021 Science 372 625 |
[15] | 2018 CODATA Value: Bohr Radius (The NIST Reference on Constants, Units, and Uncertainty) NIST 20 May 2019 |
[16] | Wang Z H, Xu B, Pei S H, Zhu J K, Wen T, Jiao C Y, Li J, Zhang M D, and Xia J 2022 Sci. Chin. Inf. Sci. 65 211401 |
[17] | Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, and McEuen P L 2007 Science 315 490 |
[18] | Zhu J K, Xu B, Xiao F, Liang Y C, Jiao C Y, Li J, Deng Q Y, Wu S, Wen T, Pei S H, Xia J, and Wang Z H 2022 Nano Lett. 22 5107 |
[19] | Lee J, Wang Z H, He K L, Yang R, Shan J, and Feng P X L 2018 Sci. Adv. 4 eaao6653 |
[20] | Verdeyen J T 1995 Laser Electronics 3rd edn (Prentice-Hall) |
[21] | Stevenson A J, Gray M B, Bachor H A, and McClelland D E 1993 Appl. Opt. 32 3481 |
[22] | Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, and Lipson M 2015 Phys. Rev. Appl. 3 044005 |
[23] | Aasi J et al. 2013 Nat. Photon. 7 613 |
[24] | The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962 |
[25] | Michaud-Belleau V, Deschênes J D, and Genest J 2022 IEEE J. Quantum Electron. 58 6100211 |
[26] | Saraf S, Urbanek K, Byer R L, and King P J 2005 Opt. Lett. 30 1195 |
[27] | Castelvecchi D 2019 Nature 575 269 |
[28] | Antognini A et al. 2013 Science 339 417 |
[29] | Cummings J P and Simonsen S H 1970 Am. Mineral. 55 90 |
[30] | Moreira R L, Teixeira N G, Andreeta M R B, Hernandes A C, and Dias A 2010 Cryst. Growth & Des. 10 1569 |
[31] | Feng G L, Li L, and Xu D P 2021 Crystals 11 928 |
[32] | Duman U, Aycibin M, and Özdemir Ö F 2021 Phys. Status Solidi B 258 2100416 |
[33] | Qin J K, Xiao H, Zhu C Y, Zhen L, and Xu C Y 2022 Adv. Opt. Mater. 10 2201627 |
[34] | Wang Z H, Jia H, Zheng X Q, Yang R, Wang Z F, Ye G J, Chen X H, Shan J, and Feng P X L 2015 Nanoscale 7 877 |
[35] | Liang Y C, Zhu J K, Xiao F, Xu B, Wen T, Wu S, Li J, Xia J, and Wang Z H 2021 IEEE J. Electron Devices Soc. 9 1269 |
[36] | Wang Z H and Feng P X L 2016 Sci. Rep. 6 28923 |
[37] | Zhu J K, Zhang P C, Yang R, and Wang Z H 2022 Sci. Chin. Inf. Sci. 65 122409 |
[38] | Wang Z H, Lee J, and Feng P X L 2014 Nat. Commun. 5 5158 |
[39] | Cleland A N 2013 Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer Science & Business Media) |
[40] | Ballman A A, Porto S P S, and Yariv A 1963 J. Appl. Phys. 34 3155 |
[41] | Lee J, Wang Z H, He K L, Shan J, and Feng P X L 2013 ACS Nano 7 6086 |
[42] | Bleszynski-Jayich A C, Shanks W E, and Harris J G E 2008 Appl. Phys. Lett. 92 013123 |
[43] | Montinaro M, Mehlin A, Solanki H S, Peddibhotla P, Mack S, Awschalom D D, and Poggio M 2012 Appl. Phys. Lett. 101 133104 |
[44] | Poggio M, Degen C L, Mamin H J, and Rugar D 2007 Phys. Rev. Lett. 99 017201 |
[45] | Cho I S, Bae S T, Yim D K, Kim D W, and Hong K S 2009 J. Am. Ceram. Soc. 92 506 |
[46] | Wang Z H, Yang R, and Feng P X L 2021 Nanoscale 13 18089 |
[47] | Zheng X Q, Lee J, and Feng P X L 2017 Microsyst. & Nanoeng. 3 17038 |
[48] | Zheng X Q, Lee J, and Feng P X L 2015 IEEE Transducers - 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21–25 June 2015, Anchorage, AK, USA, pp 1393–1396 |
[49] | Xu B, Zhu J K, Xiao F, Liu N, Liang Y C, Jiao C Y, Li J, Deng Q Y, Wu S, Wen T, Pei S H, Wan H J, Xiao X, Xia J, and Wang Z H 2022 ACS Nano 16 20229 |
[50] | Hiebert W K, Vick D, Sauer V, and Freeman M R 2010 J. Micromech. Microeng. 20 115038 |
[51] | Azak N O, Shagam M Y, Karabacak D M, Ekinci K L, Kim D H, and Jang D Y 2007 Appl. Phys. Lett. 91 093112 |
[52] | Kouh T, Karabacak D, Kim D H, and Ekinci K L 2005 Appl. Phys. Lett. 86 013106 |
[53] | LaHaye M D, Buu O, Camarota B, and Schwab K C 2004 Science 304 74 |
[54] | Losby J, Burgess J A, Diao Z, Fortin D C, Hiebert W K, and Freeman M R 2012 J. Appl. Phys. 111 07D305 |
[55] | Rajauria S, Ozsun O, Lawall J, Yakhot V, and Ekinci K L 2011 Phys. Rev. Lett. 107 174501 |
[56] | Wang Z H, Jia H, Zheng X Q, Yang R, Ye G J, Chen X H, and Feng P X L 2016 Nano Lett. 16 5394 |
[57] | Wang Z H, Lee J, He K L, Shan J, and Feng P X L 2014 Sci. Rep. 4 3919 |
[58] | Zheng X Q, Lee J, Rafique S, Han L, Zorman C A, Zhao H P, and Feng P X L 2017 ACS Appl. Mater. & Interfaces 9 43090 |
[59] | Etaki S, Poot M, Mahboob I, Onomitsu K, Yamaguchi H, and van der Zant H S J 2008 Nat. Phys. 4 785 |
[60] | Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, and Steele G A 2014 Nat. Nanotechnol. 9 820 |
[61] | Kim P H, Doolin C, Hauer B D, MacDonald A J, Freeman M R, Barclay P E, and Davis J P 2013 Appl. Phys. Lett. 102 053102 |
[62] | Basarir O, Bramhavar S, and Ekinci K L 2010 Appl. Phys. Lett. 97 253114 |
[63] | Basarir O, Bramhavar S, Basilio-Sanchez G, Morse T, and Ekinci K L 2010 Opt. Lett. 35 1792 |
[64] | Barton R A, Storch I R, Adiga V P, Sakakibara R, Cipriany B R, Ilic B, Wang S P, Ong P J, McEuen P L, Parpia J M, and Craighead H G 2012 Nano Lett. 12 4681 |
[65] | Davidovikj D, Slim J J, Cartamil-Bueno S J, van der Zant H S J, Steeneken P G, and Venstra W J 2016 Nano Lett. 16 2768 |
[66] | Zhu J K, Xiao F, Jiao C Y, Liang Y C, Wen T, Wu S, Zhang Z J, Lin L, Pei S H, Jia H, Ren Z M, Wei X Y, Huang W, Xia J, and Wang Z H 2023 Small (in press) |
[67] | Wang Z H and Feng P X L 2014 Appl. Phys. Lett. 104 103109 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|