Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 038102    DOI: 10.1088/0256-307X/40/3/038102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Achieving 1.2 fm/Hz$^{1/2}$ Displacement Sensitivity with Laser Interferometry in Two-Dimensional Nanomechanical Resonators: Pathways towards Quantum-Noise-Limited Measurement at Room Temperature
Jiankai Zhu1†, Luming Wang1†, Jiaqi Wu1†, Yachun Liang1, Fei Xiao1, Bo Xu1, Zejuan Zhang1, Xiulian Fan2, Yu Zhou2*, Juan Xia1*, and Zenghui Wang1,3*
1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
2School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China
3State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Cite this article:   
Jiankai Zhu, Luming Wang, Jiaqi Wu et al  2023 Chin. Phys. Lett. 40 038102
Download: PDF(4732KB)   PDF(mobile)(5893KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Laser interferometry is an important technique for ultrasensitive detection of motion and displacement. We push the limit of laser interferometry through noise optimization and device engineering. The contribution of noises other than shot noise is reduced from 92.6% to 62.4%, demonstrating the possibility towards shot-noise-limited measurement. Using noise thermometry, we quantify the laser heating effect and determine the range of laser power values for room-temperature measurements. With detailed analysis and optimization of signal transduction, we achieve 1.2 fm/Hz$^{1/2}$ displacement measurement sensitivity at room temperature in two-dimensional (2D) CaNb$_{2}$O$_{6}$ nanomechanical resonators, the best value reported to date among all resonators based on 2D materials. Our work demonstrates a possible pathway towards quantum-noise-limited measurement at room temperature.
Received: 28 January 2022      Express Letter Published: 20 February 2023
PACS:  07.10.Cm (Micromechanical devices and systems)  
  81.07.Oj (Nanoelectromechanical systems (NEMS))  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  95.75.Kk (Interferometry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/038102       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/038102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiankai Zhu
Luming Wang
Jiaqi Wu
Yachun Liang
Fei Xiao
Bo Xu
Zejuan Zhang
Xiulian Fan
Yu Zhou
Juan Xia
and Zenghui Wang
[1]Kipnis N 2012 History of the Principle of Interference of Light (Birkhäuser)
[2] Michelson A A and Morley E W 1887 Am. J. Sci. 3 333
[3] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102
[4] Weiss R 2018 Rev. Mod. Phys. 90 040501
[5] Barish B C 2018 Rev. Mod. Phys. 90 040502
[6] Thorne K S 2018 Rev. Mod. Phys. 90 040503
[7] Rugar D, Budakian R, Mamin H J, and Chui B W 2004 Nature 430 329
[8] Bachtold A, Moser J, and Dykman M I 2022 Rev. Mod. Phys. 94 045005
[9] Xu B, Zhang P C, Zhu J K, Liu Z H, Eicher A, Zheng X Q, Lee J, Dash A, More S, Wu S, Wang Y N, Jia H, Naik A, Bachtold A, Yang R, Feng P X L, and Wang Z H 2022 ACS Nano 16 15545
[10] Wang Z H, Fang J W, Zhang P C, and Yang R 2021 Sci. Chin. Inf. Sci. 64 206401
[11] Nguyen C T C 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 251
[12] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, and Cleland A N 2010 Nature 464 697
[13] Kotler S, Peterson G A, Shojaee E, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds R W, Aumentado J, and Teufel J D 2021 Science 372 622
[14] Mercier de Lépinay L, Ockeloen-Korppi C F, Woolley M J, and Sillanpää M A 2021 Science 372 625
[15]2018 CODATA Value: Bohr Radius (The NIST Reference on Constants, Units, and Uncertainty) NIST 20 May 2019
[16] Wang Z H, Xu B, Pei S H, Zhu J K, Wen T, Jiao C Y, Li J, Zhang M D, and Xia J 2022 Sci. Chin. Inf. Sci. 65 211401
[17] Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, and McEuen P L 2007 Science 315 490
[18] Zhu J K, Xu B, Xiao F, Liang Y C, Jiao C Y, Li J, Deng Q Y, Wu S, Wen T, Pei S H, Xia J, and Wang Z H 2022 Nano Lett. 22 5107
[19] Lee J, Wang Z H, He K L, Yang R, Shan J, and Feng P X L 2018 Sci. Adv. 4 eaao6653
[20]Verdeyen J T 1995 Laser Electronics 3rd edn (Prentice-Hall)
[21] Stevenson A J, Gray M B, Bachor H A, and McClelland D E 1993 Appl. Opt. 32 3481
[22] Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, and Lipson M 2015 Phys. Rev. Appl. 3 044005
[23] Aasi J et al. 2013 Nat. Photon. 7 613
[24] The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962
[25] Michaud-Belleau V, Deschênes J D, and Genest J 2022 IEEE J. Quantum Electron. 58 6100211
[26] Saraf S, Urbanek K, Byer R L, and King P J 2005 Opt. Lett. 30 1195
[27] Castelvecchi D 2019 Nature 575 269
[28] Antognini A et al. 2013 Science 339 417
[29]Cummings J P and Simonsen S H 1970 Am. Mineral. 55 90
[30] Moreira R L, Teixeira N G, Andreeta M R B, Hernandes A C, and Dias A 2010 Cryst. Growth & Des. 10 1569
[31] Feng G L, Li L, and Xu D P 2021 Crystals 11 928
[32] Duman U, Aycibin M, and Özdemir Ö F 2021 Phys. Status Solidi B 258 2100416
[33] Qin J K, Xiao H, Zhu C Y, Zhen L, and Xu C Y 2022 Adv. Opt. Mater. 10 2201627
[34] Wang Z H, Jia H, Zheng X Q, Yang R, Wang Z F, Ye G J, Chen X H, Shan J, and Feng P X L 2015 Nanoscale 7 877
[35] Liang Y C, Zhu J K, Xiao F, Xu B, Wen T, Wu S, Li J, Xia J, and Wang Z H 2021 IEEE J. Electron Devices Soc. 9 1269
[36] Wang Z H and Feng P X L 2016 Sci. Rep. 6 28923
[37] Zhu J K, Zhang P C, Yang R, and Wang Z H 2022 Sci. Chin. Inf. Sci. 65 122409
[38] Wang Z H, Lee J, and Feng P X L 2014 Nat. Commun. 5 5158
[39]Cleland A N 2013 Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer Science & Business Media)
[40] Ballman A A, Porto S P S, and Yariv A 1963 J. Appl. Phys. 34 3155
[41] Lee J, Wang Z H, He K L, Shan J, and Feng P X L 2013 ACS Nano 7 6086
[42] Bleszynski-Jayich A C, Shanks W E, and Harris J G E 2008 Appl. Phys. Lett. 92 013123
[43] Montinaro M, Mehlin A, Solanki H S, Peddibhotla P, Mack S, Awschalom D D, and Poggio M 2012 Appl. Phys. Lett. 101 133104
[44] Poggio M, Degen C L, Mamin H J, and Rugar D 2007 Phys. Rev. Lett. 99 017201
[45] Cho I S, Bae S T, Yim D K, Kim D W, and Hong K S 2009 J. Am. Ceram. Soc. 92 506
[46] Wang Z H, Yang R, and Feng P X L 2021 Nanoscale 13 18089
[47] Zheng X Q, Lee J, and Feng P X L 2017 Microsyst. & Nanoeng. 3 17038
[48] Zheng X Q, Lee J, and Feng P X L 2015 IEEE Transducers - 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21–25 June 2015, Anchorage, AK, USA, pp 1393–1396
[49] Xu B, Zhu J K, Xiao F, Liu N, Liang Y C, Jiao C Y, Li J, Deng Q Y, Wu S, Wen T, Pei S H, Wan H J, Xiao X, Xia J, and Wang Z H 2022 ACS Nano 16 20229
[50] Hiebert W K, Vick D, Sauer V, and Freeman M R 2010 J. Micromech. Microeng. 20 115038
[51] Azak N O, Shagam M Y, Karabacak D M, Ekinci K L, Kim D H, and Jang D Y 2007 Appl. Phys. Lett. 91 093112
[52] Kouh T, Karabacak D, Kim D H, and Ekinci K L 2005 Appl. Phys. Lett. 86 013106
[53] LaHaye M D, Buu O, Camarota B, and Schwab K C 2004 Science 304 74
[54] Losby J, Burgess J A, Diao Z, Fortin D C, Hiebert W K, and Freeman M R 2012 J. Appl. Phys. 111 07D305
[55] Rajauria S, Ozsun O, Lawall J, Yakhot V, and Ekinci K L 2011 Phys. Rev. Lett. 107 174501
[56] Wang Z H, Jia H, Zheng X Q, Yang R, Ye G J, Chen X H, and Feng P X L 2016 Nano Lett. 16 5394
[57] Wang Z H, Lee J, He K L, Shan J, and Feng P X L 2014 Sci. Rep. 4 3919
[58] Zheng X Q, Lee J, Rafique S, Han L, Zorman C A, Zhao H P, and Feng P X L 2017 ACS Appl. Mater. & Interfaces 9 43090
[59] Etaki S, Poot M, Mahboob I, Onomitsu K, Yamaguchi H, and van der Zant H S J 2008 Nat. Phys. 4 785
[60] Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, and Steele G A 2014 Nat. Nanotechnol. 9 820
[61] Kim P H, Doolin C, Hauer B D, MacDonald A J, Freeman M R, Barclay P E, and Davis J P 2013 Appl. Phys. Lett. 102 053102
[62] Basarir O, Bramhavar S, and Ekinci K L 2010 Appl. Phys. Lett. 97 253114
[63] Basarir O, Bramhavar S, Basilio-Sanchez G, Morse T, and Ekinci K L 2010 Opt. Lett. 35 1792
[64] Barton R A, Storch I R, Adiga V P, Sakakibara R, Cipriany B R, Ilic B, Wang S P, Ong P J, McEuen P L, Parpia J M, and Craighead H G 2012 Nano Lett. 12 4681
[65] Davidovikj D, Slim J J, Cartamil-Bueno S J, van der Zant H S J, Steeneken P G, and Venstra W J 2016 Nano Lett. 16 2768
[66]Zhu J K, Xiao F, Jiao C Y, Liang Y C, Wen T, Wu S, Zhang Z J, Lin L, Pei S H, Jia H, Ren Z M, Wei X Y, Huang W, Xia J, and Wang Z H 2023 Small (in press)
[67] Wang Z H and Feng P X L 2014 Appl. Phys. Lett. 104 103109
Related articles from Frontiers Journals
[1] Dong-Lin Wang, Yun-Qi Hao, Feng-Xiao Zhai, Kun Yang, Hong-Qiong Liu, Qiao Chen, Huikai Xie. Endoscopic Optical Doppler Tomography Based on Two-Axis Scanning MEMS Mirror[J]. Chin. Phys. Lett., 2018, 35(12): 038102
[2] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 038102
[3] WU Jian-Xiong, CHENG Teng, ZHANG Qing-Chuan, ZHANG Yong, MAO Liang, GAO Jie, CHEN Da-Peng, WU Xiao-Ping. Research of Infrared Imaging at Atmospheric Pressure Using a Substrate-Free Focal Plane Array[J]. Chin. Phys. Lett., 2013, 30(1): 038102
[4] ZENG Hong-Jiang, LI Tie, JIN Qin-Hua, XU Fang-Fang, WANG Yue-Lin. Determination of the Lattice Parameters of a Si Nanobelt in a Tensile Test Process Using an MEMS Actuator[J]. Chin. Phys. Lett., 2012, 29(12): 038102
[5] LI Da-Rang, JIANG Lan, YIN Jian-Hua, TAN Yuan-Yuan, LIN Nai. Betavoltaic Battery Conversion Efficiency Improvement Based on Interlayer Structures[J]. Chin. Phys. Lett., 2012, 29(7): 038102
[6] CHEN Hai-Yang, JIANG Lan**, LI Da-Rang . Measurement of Beta Particles Induced Electron-Hole Pairs Recombination in Depletion Region of GaAs PN Junction[J]. Chin. Phys. Lett., 2011, 28(5): 038102
[7] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 038102
[8] WANG Yu, GUO Kai, PEI Wei-Hua**, GUI Qiang, LI Xiao-Qian, CHEN Hong-Da, YANG Jian-Hong . Fabrication of Dry Electrode for Recording Bio-potentials[J]. Chin. Phys. Lett., 2011, 28(1): 038102
[9] QIAO Da-Yong, YUAN Wei-Zheng, GAO Peng, YAO Xian-Wang, ZANG Bo, ZHANG Lin, GUO Hui, ZHANG Hong-Jian. Demonstration of a 4H SiC Betavoltaic Nuclear Battery Based on Schottky Barrier Diode[J]. Chin. Phys. Lett., 2008, 25(10): 038102
[10] DONG Feng-Liang, ZHANG Qing-Chuan, CHEN Da-Peng, MIAO Zheng-Yu, XIONG Zhi-Ming, GUO Zhe-Ying, LI Chao-Bo, JIAO Bin-Bin, WU Xiao-Ping. Optimized Optomechanical Micro-Cantilever Array for Uncooled Infrared Imaging[J]. Chin. Phys. Lett., 2007, 24(12): 038102
[11] LI Kai, LIU Hong, ZHANG Qing-Chuan, XUE Chang-Guo, WU Xiao-Ping. Conformational Transition of Poly (Acrylic Acid) Detected by Microcantilever Sensing[J]. Chin. Phys. Lett., 2007, 24(6): 038102
[12] YUE Rui-Feng, DONG Liang, LIU Li-Tian. Integrated a-Si:B Microbolometer Arrays Based on Improved Porous Silicon Micromachining Techniques[J]. Chin. Phys. Lett., 2006, 23(5): 038102
[13] DONG Liang, YUE Rui-Feng, LIU Li-Tian, ZHANG Wan-Jie. Freestanding a-Si Thin Film Transistor for Room-Temperature Infrared Detection[J]. Chin. Phys. Lett., 2004, 21(2): 038102
[14] DUAN Zhi-Hui, ZHANG Qing-Chuan, WU Xiao-Ping, PAN Liang, CHEN Da-Peng, WANG Wei-Bing, GUO Zhe-Ying. Uncooled Optically Readable Bimaterial Micro-Cantilever Infrared Imaging Device[J]. Chin. Phys. Lett., 2003, 20(12): 038102
[15] JIANG Zhong-Wei, ZHOU Yong-Jun, YUAN Da-Jun, HUANG Wen-Hao, XIA An-Dong,. A Two-Photon Femtosecond Laser System for Three-Dimensional Microfabrication and Data Storage[J]. Chin. Phys. Lett., 2003, 20(12): 038102
Viewed
Full text


Abstract