CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Finite Capacitive Response at the Quantum Hall Plateau |
Lili Zhao1, Wenlu Lin1, Y. J. Chung2, K. W. Baldwin2, L. N. Pfeiffer2, and Yang Liu1* |
1International Center for Quantum Materials, Peking University, Beijing 100871, China 2Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
|
|
Cite this article: |
Lili Zhao, Wenlu Lin, Y. J. Chung et al 2022 Chin. Phys. Lett. 39 097301 |
|
|
Abstract We study ultra-high-mobility two-dimensional (2D) electron/hole systems with high precision capacitance measurement. It is found that the capacitance charge appears only at the fringe of the gate at high magnetic field when the 2D conductivity decreases significantly. At integer quantum Hall effects, the capacitance vanishes and forms a plateau at high temperatures $T\gtrsim 300$ mK, which surprisingly disappears at $T\lesssim 100$ mK. This anomalous behavior is likely a manifestation that dilute particles/vacancies in the top-most Landau level form Wigner crystals, which have finite compressibility and can host polarization current.
|
|
Received: 11 May 2022
Published: 12 August 2022
|
|
PACS: |
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
73.43.Lp
|
(Collective excitations)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
|
|
|
[1] | Prange R E and Girvin S M 1987 The Quantum Hall Effect (New York: Springer) |
[2] | Sarma S D and Pinczuk A 1997 Perspectives in Quantum Hall Effects (New York: Wiley) |
[3] | Jain J K 2007 Composite Fermions (Cambridge: Cambridge University Press) |
[4] | Jiang H W, Willett R L, Stormer H L, Tsui D C, Pfeiffer L N, and West K W 1990 Phys. Rev. Lett. 65 633 |
[5] | Goldman V J, Santos M, Shayegan M, and Cunningham J E 1990 Phys. Rev. Lett. 65 2189 |
[6] | See articles by Fertig H A and by Shayegan M in Ref.[2]. |
[7] | Chen Y, Lewis R M, Engel L W, Tsui D C, Ye P D, Pfeiffer L N, and West K W 2003 Phys. Rev. Lett. 91 016801 |
[8] | Liu Y, Pappas C G, Shayegan M, Pfeiffer L N, West K W, and Baldwin K W 2012 Phys. Rev. Lett. 109 036801 |
[9] | Hatke A T, Liu Y, Magill B A, Moon B H, Engel L W, Shayegan M, Pfeiffer L N, West K W, and Baldwin K W 2014 Nat. Commun. 5 4154 |
[10] | Myers S A, Huang H, Pfeiffer L N, West K W, and Csáthy G A 2021 Phys. Rev. B 104 045311 |
[11] | Kaplit M and Zemel J N 1968 Phys. Rev. Lett. 21 212 |
[12] | Voshchenkov A M and Zemel J N 1974 Phys. Rev. B 9 4410 |
[13] | Smith T P, Goldberg B B, Stiles P J, and Heiblum M 1985 Phys. Rev. B 32 2696 |
[14] | Mosser V, Weiss D, Klitzing K, Ploog K, and Weimann G 1986 Solid State Commun. 58 5 |
[15] | Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Pearton S J, Baldwin K W, and West K W 1992 Phys. Rev. Lett. 68 3088 |
[16] | Smith T P, Wang W I, and Stiles P J 1986 Phys. Rev. B 34 2995 |
[17] | Yang M J, Yang C H, Bennett B R, and Shanabrook B V 1997 Phys. Rev. Lett. 78 4613 |
[18] | Eisenstein J P, Pfeiffer L N, and West K W 1994 Phys. Rev. B 50 1760 |
[19] | Zibrov A A, Kometter C, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Zaletel M P, and Young A F 2017 Nature 549 360 |
[20] | Irie H, Akiho T, and Muraki K 2019 Appl. Phys. Express 12 063004 |
[21] | Eisenstein J P, Pfeiffer L N, and West K W 1992 Phys. Rev. Lett. 68 674 |
[22] | Deng H, Pfeiffer L N, West K W, Baldwin K W, Engel L W, and Shayegan M 2019 Phys. Rev. Lett. 122 116601 |
[23] | Jo J, Garcia E A, Abkemeier K M, Santos M B, and Shayegan M 1993 Phys. Rev. B 47 4056 |
[24] | Zibrov A A, Rao P, Kometter C, Spanton E M, Li J I A, Dean C R, Taniguchi T, Watanabe K, Serbyn M, and Young A F 2018 Phys. Rev. Lett. 121 167601 |
[25] | Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P, and Ashoori R C 2019 Phys. Rev. Lett. 123 046601 |
[26] | Zhao L, Lin W, Fan X, Song Y, Lu H, and Liu Y 2022 Rev. Sci. Instrum. 93 053910 |
[27] | In samples A, B and C, our measured capacitance approaches a constant value $\simeq$60 fF when the particles form incompressible integer quantum Hall liquid. This is likely the parasitic capacitance $C_{\rm P}$ induced by the bonding wires, gates, etc. In sample D, $C_{\rm P}$ is reduced to $\simeq$15 fF because we add one impedance matching network at the input of the bridge at the sample stage. We have subtracted $C_{\rm P}$ in all figures. |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|