CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene |
Lijun Zhu1,2,3, Lin Li1,2,3*, Xiaodong Fan1,2,3, Zhongniu Xie1,2,3, and Changgan Zeng1,2,3* |
1CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China 2International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China 3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
|
|
Cite this article: |
Lijun Zhu, Lin Li, Xiaodong Fan et al 2022 Chin. Phys. Lett. 39 097302 |
|
|
Abstract For conductors in the ballistic regime, electron-boundary scattering at the sample edge plays a dominant role in determining the transport performance, giving rise to many intriguing phenomena like low-field negative magnetoresistance effect. We systematically investigate the magneto-transport behaviors of BN-encapsulated graphene devices with narrow channel width $W$, wherein the bulk mean free path $L_{\rm mfp}$ can be very large and highly tunable. By comparing the magnetoresistance features and the amplitude of $L_{\rm mfp}$ in a large parameter space of temperature and carrier density, we reveal that the boundary-scattering-dominated negative magnetoresistance effect can still survive even when the ballistic ratio ($L_{\rm mfp}/W$) is as low as 0.15. This striking value is much smaller than the expected value for achieving (quasi-) ballistic transport regime ($L_{\rm mfp}/W \ge 1$), and can be attributed to the ultra-low specularity of the sample edge of our graphene devices. These findings enrich our understanding of the effects of boundary scattering on channel transport, which is of vital importance for future designs of two-dimensional electronic devices with limited lateral sizes.
|
|
Received: 21 June 2022
Published: 03 September 2022
|
|
PACS: |
73.23.Ad
|
(Ballistic transport)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
72.15.Lh
|
(Relaxation times and mean free paths)
|
|
|
|
|
[1] | Beenakker C and van Houten H 1991 Solid State Physics (Amsterdam: Elsevier) vol 44 chap 2 p 26 |
[2] | Thornton T J, Roukes M L, Scherer A, and Van de Gaag B P 1989 Phys. Rev. Lett. 63 2128 |
[3] | Masubuchi S, Iguchi K, Yamaguchi T, Onuki M, Arai M, Watanabe K, Taniguchi T, and Machida T 2012 Phys. Rev. Lett. 109 036601 |
[4] | Moll P J W, Kushwaha P, Nandi N, Schmidt B, and Mackenzie A P 2016 Science 351 1061 |
[5] | Sulpizio J A, Ella1 L, Rozen A, Birkbeck J, Perello D J, Dutta D, Ben-Shalom M, Taniguchi T, Watanabe K, Holder T, Queiroz R, Principi A, Stern A, Scaffidi T, Geim A K, and Ilani S 2019 Nature 576 75 |
[6] | Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, and Geim A K 2011 Nano Lett. 11 2396 |
[7] | Völkl T, Rockinger T, Drienovsky M, Watanabe K, Taniguchi T, Weiss D, and Eroms J 2017 Phys. Rev. B 96 125405 |
[8] | Raichev O E, Gusev G M, Levin A D, and Bakarov A K 2020 Phys. Rev. B 101 235314 |
[9] | Uredat P, Kodaira R, Horiguchi R, Hara S, Beyer A, Volz K, Klar P J, and Elm M T 2020 Nano Lett. 20 618 |
[10] | Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei1 S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J 2010 Nat. Nanotechnol. 5 722 |
[11] | Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614 |
[12] | Taychatanapat T, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2013 Nat. Phys. 9 225 |
[13] | Zhang Y, Tan Y W, Stormer H L, and Kim P 2005 Nature 438 201 |
[14] | Novoselov K S, Geim1 A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A 2005 Nature 438 197 |
[15] | Ki D K, Jeong D, Choi J H, Lee H J, and Park K S 2008 Phys. Rev. B 78 125409 |
[16] | Tikhonenko F V, Horsell D W, Gorbachev R V, and Savchenko A K 2008 Phys. Rev. Lett. 100 056802 |
[17] | McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T, and Altshuler B L 2006 Phys. Rev. Lett. 97 146805 |
[18] | Wu X, Li X, Song Z, Berger C, and de Heer W A 2007 Phys. Rev. Lett. 98 136801 |
[19] | Engels S, Terrés B, Epping A, Khodkov T, Watanabe K, Taniguchi T, Beschoten B, and Stampfer C 2014 Phys. Rev. Lett. 113 126801 |
[20] | Jafarpisheh S, Cummings A W, Watanabe K, Taniguchi T, Beschoten B, and Stampfer C 2018 Phys. Rev. B 98 241402 |
[21] | Iwasaki T, Moriyama S, Ahmad N F, Komatsu K, Watanabe K, Taniguchi T, Wakayama Y, Hashim A M, Morita Y, and Nakaharai S 2021 Sci. Rep. 11 18845 |
[22] | Chen J H, Jang C, Xiao S, Ishigami M, and Fuhrer M S 2008 Nat. Nanotechnol. 3 206 |
[23] | Hwang E H and Sarma S D 2008 Phys. Rev. B 77 115449 |
[24] | Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, and Geim A K 2008 Phys. Rev. Lett. 100 016602 |
[25] | Alekseev P S 2016 Phys. Rev. Lett. 117 166601 |
[26] | Scaffidi T, Nandi N, Schmidt B, Mackenzie A P, and Moore J E 2017 Phys. Rev. Lett. 118 226601 |
[27] | Holder T, Queiroz R, Scaffidi T, Silberstein N, Rozen A, Sulpizio J A, Ella L, Ilani S, and Stern A 2019 Phys. Rev. B 100 245305 |
[28] | Sarma S D, Adam S, Hwang E H, and Rossi E 2011 Rev. Mod. Phys. 83 407 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|