Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 097301    DOI: 10.1088/0256-307X/39/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Finite Capacitive Response at the Quantum Hall Plateau
Lili Zhao1, Wenlu Lin1, Y. J. Chung2, K. W. Baldwin2, L. N. Pfeiffer2, and Yang Liu1*
1International Center for Quantum Materials, Peking University, Beijing 100871, China
2Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
Cite this article:   
Lili Zhao, Wenlu Lin, Y. J. Chung et al  2022 Chin. Phys. Lett. 39 097301
Download: PDF(1695KB)   PDF(mobile)(1696KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study ultra-high-mobility two-dimensional (2D) electron/hole systems with high precision capacitance measurement. It is found that the capacitance charge appears only at the fringe of the gate at high magnetic field when the 2D conductivity decreases significantly. At integer quantum Hall effects, the capacitance vanishes and forms a plateau at high temperatures $T\gtrsim 300$ mK, which surprisingly disappears at $T\lesssim 100$ mK. This anomalous behavior is likely a manifestation that dilute particles/vacancies in the top-most Landau level form Wigner crystals, which have finite compressibility and can host polarization current.
Received: 11 May 2022      Published: 12 August 2022
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.43.Lp (Collective excitations)  
  73.43.Nq (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/097301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/097301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lili Zhao
Wenlu Lin
Y. J. Chung
K. W. Baldwin
L. N. Pfeiffer
and Yang Liu
[1]Prange R E and Girvin S M 1987 The Quantum Hall Effect (New York: Springer)
[2]Sarma S D and Pinczuk A 1997 Perspectives in Quantum Hall Effects (New York: Wiley)
[3]Jain J K 2007 Composite Fermions (Cambridge: Cambridge University Press)
[4] Jiang H W, Willett R L, Stormer H L, Tsui D C, Pfeiffer L N, and West K W 1990 Phys. Rev. Lett. 65 633
[5] Goldman V J, Santos M, Shayegan M, and Cunningham J E 1990 Phys. Rev. Lett. 65 2189
[6]See articles by Fertig H A and by Shayegan M in Ref.[2].
[7] Chen Y, Lewis R M, Engel L W, Tsui D C, Ye P D, Pfeiffer L N, and West K W 2003 Phys. Rev. Lett. 91 016801
[8] Liu Y, Pappas C G, Shayegan M, Pfeiffer L N, West K W, and Baldwin K W 2012 Phys. Rev. Lett. 109 036801
[9] Hatke A T, Liu Y, Magill B A, Moon B H, Engel L W, Shayegan M, Pfeiffer L N, West K W, and Baldwin K W 2014 Nat. Commun. 5 4154
[10] Myers S A, Huang H, Pfeiffer L N, West K W, and Csáthy G A 2021 Phys. Rev. B 104 045311
[11] Kaplit M and Zemel J N 1968 Phys. Rev. Lett. 21 212
[12] Voshchenkov A M and Zemel J N 1974 Phys. Rev. B 9 4410
[13] Smith T P, Goldberg B B, Stiles P J, and Heiblum M 1985 Phys. Rev. B 32 2696
[14] Mosser V, Weiss D, Klitzing K, Ploog K, and Weimann G 1986 Solid State Commun. 58 5
[15] Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Pearton S J, Baldwin K W, and West K W 1992 Phys. Rev. Lett. 68 3088
[16] Smith T P, Wang W I, and Stiles P J 1986 Phys. Rev. B 34 2995
[17] Yang M J, Yang C H, Bennett B R, and Shanabrook B V 1997 Phys. Rev. Lett. 78 4613
[18] Eisenstein J P, Pfeiffer L N, and West K W 1994 Phys. Rev. B 50 1760
[19] Zibrov A A, Kometter C, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Zaletel M P, and Young A F 2017 Nature 549 360
[20] Irie H, Akiho T, and Muraki K 2019 Appl. Phys. Express 12 063004
[21] Eisenstein J P, Pfeiffer L N, and West K W 1992 Phys. Rev. Lett. 68 674
[22] Deng H, Pfeiffer L N, West K W, Baldwin K W, Engel L W, and Shayegan M 2019 Phys. Rev. Lett. 122 116601
[23] Jo J, Garcia E A, Abkemeier K M, Santos M B, and Shayegan M 1993 Phys. Rev. B 47 4056
[24] Zibrov A A, Rao P, Kometter C, Spanton E M, Li J I A, Dean C R, Taniguchi T, Watanabe K, Serbyn M, and Young A F 2018 Phys. Rev. Lett. 121 167601
[25] Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P, and Ashoori R C 2019 Phys. Rev. Lett. 123 046601
[26] Zhao L, Lin W, Fan X, Song Y, Lu H, and Liu Y 2022 Rev. Sci. Instrum. 93 053910
[27]In samples A, B and C, our measured capacitance approaches a constant value $\simeq$60 fF when the particles form incompressible integer quantum Hall liquid. This is likely the parasitic capacitance $C_{\rm P}$ induced by the bonding wires, gates, etc. In sample D, $C_{\rm P}$ is reduced to $\simeq$15 fF because we add one impedance matching network at the input of the bridge at the sample stage. We have subtracted $C_{\rm P}$ in all figures.
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 097301
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 097301
[3] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 097301
[4] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 097301
[5] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 097301
[6] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 097301
[7] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 097301
[8] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 097301
[9] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 097301
[10] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 097301
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 097301
[12] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 097301
[13] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 097301
[14] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 097301
[15] CAI Yong-Jing, LI Ming, XIONG Xiao, YU Le, REN Xi-Feng, GUO Guo-Ping, GUO Guang-Can. Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2015, 32(10): 097301
Viewed
Full text


Abstract