Chin. Phys. Lett.  2022, Vol. 39 Issue (8): 084301    DOI: 10.1088/0256-307X/39/8/084301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Topological Wannier Cycles for the Bulk and Edges
Ze-Lin Kong1, Zhi-Kang Lin1*, and Jian-Hua Jiang1,2*
1School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, and Key Lab of Modern Optical Technologies of Ministry of Education, Soochow University, Suzhou 215006, China
Cite this article:   
Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang 2022 Chin. Phys. Lett. 39 084301
Download: PDF(1790KB)   PDF(mobile)(3098KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological materials are often characterized by unique edge states which are in turn used to detect different topological phases in experiments. Recently, with the discovery of various higher-order topological insulators, such spectral topological characteristics are extended from edge states to corner states. However, the chiral symmetry protecting the corner states is often broken in genuine materials, leading to vulnerable corner states even when the higher-order topological numbers remain quantized and invariant. Here, we show that a local artificial gauge flux can serve as a robust probe of the Wannier type higher-order topological insulators, which is effective even when the chiral symmetry is broken. The resultant observable signature is the emergence of the cyclic spectral flows traversing one or multiple band gaps. These spectral flows are associated with the local modes bound to the artificial gauge flux. This phenomenon is essentially due to the cyclic transformation of the Wannier orbitals when the local gauge flux acts on them. We extend topological Wannier cycles to systems with $C_{2}$ and $C_{3}$ symmetries and show that they can probe both the bulk and the edge Wannier centers, yielding rich topological phenomena.
Received: 21 March 2022      Editors' Suggestion Published: 05 July 2022
PACS:  43.40.+s (Structural acoustics and vibration)  
  43.20.+g (General linear acoustics)  
  46.40.-f (Vibrations and mechanical waves)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/8/084301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I8/084301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Lin Kong
Zhi-Kang Lin
and Jian-Hua Jiang
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 61 357
[4] Langbehn J, Peng Y, Trifunovic L, Oppen F V and Brouwer P W 2017 Phys. Rev. Lett. 119 246401
[5] Song Z, Fang Z and Fang C 2017 Phys. Rev. Lett. 119 246402
[6] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115
[7] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346
[8] Ezawa M 2018 Phys. Rev. Lett. 120 026801
[9] Miert G V and Ortix C 2018 Phys. Rev. B 98 081110
[10] Benalcazar W A, Li T and Hughes T L 2019 Phys. Rev. B 99 245151
[11] Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G and Huber S D 2018 Nature 555 342
[12] Peterson C W, Benalcazar W A, Hughes T L and Bahl G 2018 Nature 555 346
[13] Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T and Thomale R 2018 Nat. Phys. 14 925
[14] Noh J, Benalcazar W A, Huang S, Collins M J, Chen K P, Hughes T L and Rechtsman M C 2018 Nat. Photon. 12 408
[15] Zhang X, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F and Jiang J H 2019 Nat. Phys. 15 582
[16] Zhang X, Xie B Y, Wang H F, Xu X, Tian Y, Jiang J H, Lu M H and Chen Y F 2019 Nat. Commun. 10 5331
[17] Xue H, Yang Y, Gao F, Chong Y and Zhang B 2019 Nat. Mater. 18 108
[18] Ni X, Weiner M, Alu A and Khanikaev A B 2019 Nat. Mater. 18 113
[19] Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y and Iwamoto S 2019 Optica 6 786
[20] Chen X D, Deng W M, Shi F L, Zhao F L, Chen M and Dong J W 2019 Phys. Rev. Lett. 122 233902
[21] Xie B, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L and Chen Y F 2019 Phys. Rev. Lett. 122 233903
[22] Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A and Hafezi M 2019 Nat. Photon. 13 692
[23] Li M, Zhirihin D, Gorlach M, Ni X, Filonov D, Slobozhanyuk A, Alù A and Khanikaev A B 2020 Nat. Photon. 14 89
[24] Xue H R, Yang Y H, Liu G G, Gao F, Chong Y D and Zhang B L 2019 Phys. Rev. Lett. 122 244301
[25] Zhang X, Lin Z K, Wang H X, Xiong Z, Tian Y, Lu M H, Chen Y F and Jiang J H 2020 Nat. Commun. 11 65
[26] Weiner M, Ni X, Li M, Alù A and Khanikaev A B 2020 Sci. Adv. 6 eaay4166
[27] Qi Y, Qiu C, Xiao M, He H, Ke M and Liu Z 2020 Phys. Rev. Lett. 124 206601
[28] Ni X, Li M, Weiner M, Alu A and Khanikaev A B 2020 Nat. Commun. 11 2108
[29] Wu Y, Yan M, Lin Z K, Wang H X, Li F and Jiang J H 2021 Sci. Bull. 66 1959
[30] Xie B, Wang H X, Zhang X, Zhan P, Jiang J H, Lu M and Chen Y 2021 Nat. Rev. Phys. 3 520
[31] Peterson C W, Li T, Benalcazar W A, Hughes T L and Bahl G 2020 Science 368 1114
[32] Leung S W, Liu Y, Li F F, Liang C P, Poo Y and Jiang J H 2022 arXiv:2203.00206 [physics.optics]
[33] Miert G V and Ortix C 2020 npj Quantum Mater. 5 63
[34] Lin Z K, Wu Y, Jiang B, Liu Y, Wu S, Li F and Jiang J H 2022 Nat. Mater. 21 430
[35] Po H C, Vishwanath A and Watanabe H 2017 Nat. Commun. 8 50
[36] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298
[37] Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Fang Z, Weng H M and Fang C 2019 Nature 566 475
[38] Tang F, Po H C, Vishwanath A and Wan X G 2019 Nature 566 486
[39] Ran Y, Zhang Y and Vishwanath A 2009 Nat. Phys. 5 298
[40] Teo J C Y and Kane C L 2010 Phys. Rev. B 82 115120
[41] Juričić V, Mesaros A, Slager R J and Zaanen J 2012 Phys. Rev. Lett. 108 106403
[42] Juan F D, Rüegg A and Lee D H 2014 Phys. Rev. B 89 161117
[43] Slager R J, Mesaros A, Juričić V and Zaanen J 2014 Phys. Rev. B 90 241403
[44] Miert G V and Ortix C 2018 Phys. Rev. B 97 201111
[45] Queiroz R, Fulga I C, Avraham N, Beidenkopf H and Cano J 2019 Phys. Rev. Lett. 123 266802
[46] Slager R J 2019 J. Phys. Chem. Solids 128 24
[47] Roy B and Juričić V 2021 Phys. Rev. Research 3 033107
[48] Paulose J, Chen B G and Vitelli V 2015 Nat. Phys. 11 153
[49] Li F F, Wang H X, Xiong Z, Lou Q, Chen P, Wu R X, Poo Y, Jiang J H and Sajeev J 2018 Nat. Commun. 9 2462
[50] Nayak A K, Reiner J, Queiroz R, Fu H X, Shekhar C, Yan B H, Felser C, Avraham N and Beidenkopf H 2019 Sci. Adv. 5 eaax6996
[51] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[52] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[53] Song Z D, Elcoro L and Bernevig B A 2020 Science 367 794
[54] Gao J, Qian Y T, Jia H X, Guo Z P, Fang Z, Liu M, Weng H M and Wang Z J 2021 arXiv:2106.08035 [cond-mat.mtrl-sci]
Related articles from Frontiers Journals
[1] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 084301
[2] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 084301
[3] Jiang-Wei Liu, Dian-Long Yu, Hai-Bin Yang, Hui-Jie Shen, Ji-Hong Wen. Effect of Mean Flow on Acoustic Wave Propagation in a Duct with a Periodic Array of Helmholtz Resonators[J]. Chin. Phys. Lett., 2020, 37(3): 084301
[4] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 084301
[5] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 084301
[6] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 084301
[7] Dian-Long Yu, Chun-Yang Du, Hui-Jie Shen, Jiang-Wei Liu, Ji-Hong Wen. An Analysis of Structural-Acoustic Coupling Band Gaps in a Fluid-Filled Periodic Pipe[J]. Chin. Phys. Lett., 2017, 34(7): 084301
[8] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 084301
[9] Zhen-Dong Wei, Bao-Ren Li, Jing-Min Du, Gang Yang. Theoretical and Experimental Investigation of Flexural Vibration Transfer Properties of High-Pressure Periodic Pipe[J]. Chin. Phys. Lett., 2016, 33(04): 084301
[10] CAI Li, WEN Ji-Hong, YU Dian-Long, LU Zhi-Miao, WEN Xi-Sen. Design of the Coordinate Transformation Function for Cylindrical Acoustic Cloaks with a Quantity of Discrete Layers[J]. Chin. Phys. Lett., 2014, 31(09): 084301
[11] XU Yan-Long, CHEN Chang-Qing, TIAN Xiao-Geng. The Existence of Simultaneous Bragg and Locally Resonant Band Gaps in Composite Phononic Crystal[J]. Chin. Phys. Lett., 2013, 30(4): 084301
[12] WANG Jian-Wei, WANG Gang, CHEN Sheng-Bing, WEN Ji-Hong. Broadband Attenuation in Phononic Beams Induced by Periodic Arrays of Feedback Shunted Piezoelectric Patches[J]. Chin. Phys. Lett., 2012, 29(6): 084301
[13] LIU Xiao-Bo, ZHANG Jian-Run, LI Pu, LE Van-Quynh. Energy Measurement of Bubble Bursting Based on Vibration Signals[J]. Chin. Phys. Lett., 2012, 29(6): 084301
[14] WANG Yi-Ze, LI Feng-Ming. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress[J]. Chin. Phys. Lett., 2012, 29(3): 084301
[15] CHEN Sheng-Bing**, WEN Ji-Hong, WANG Gang, HAN Xiao-Yun, WEN Xi-Sen . Locally Resonant Gaps of Phononic Beams Induced by Periodic Arrays of Resonant Shunts[J]. Chin. Phys. Lett., 2011, 28(9): 084301
Viewed
Full text


Abstract