CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts |
Chuli Sun2, Wei Guo1,2,3*, and Yugui Yao1,2,3 |
1Frontiers Science Center for High Energy Material (MOE), Beijing Institute of Technology, Beijing 100081, China 2Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China 3State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
|
|
Cite this article: |
Chuli Sun, Wei Guo, and Yugui Yao 2022 Chin. Phys. Lett. 39 087101 |
|
|
Abstract Metal-pentazolate compounds as candidates for novel high-energy-density materials have attracted extensive attention in recent years. However, dehydrated pentazolate salts of transition metal iron are rarely reported. We predict two new iron pentazolate salts $Fdd2$-FeN$_{10}$ and $P\bar{1}$(No.1)-FeN$_{10}$ using a constrained crystal search method based on first-principles calculations. We propose that the stable $Fdd2$-FeN$_{10}$ crystal may be synthesized from FeN and N$_{2}$ above 20 GPa, and its formation enthalpy is lower than the reported iron pentazolate salt (marked as $P\bar{1}$(No.2)-FeN$_{10}$). Crystal $P\bar{1}$(No.1)-FeN$_{10}$ is composed of iron bispentazole molecules. Formation enthalpy, phonon spectrum and ab initio molecular dynamics calculations are performed to show their thermodynamic, mechanical and dynamic properties. Moreover, the high energy density (3.709 kJ/g, 6.349 kJ/g) and good explosive performance indicate their potential applications as high-energy-density materials.
|
|
Received: 26 April 2022
Published: 18 July 2022
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.15.Pd
|
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
|
|
|
[1] | Xu Y, Wang Q, Shen C, Lin Q, Wang P and Lu M 2017 Nature 549 78 |
[2] | Zhang C, Sun C, Hu B, Yu C and Lu M 2017 Science 355 374 |
[3] | Zhang C, Yang C, Hu B, Yu C, Zheng Z and Sun C 2017 Angew. Chem. Int. Ed. 56 4512 |
[4] | Luo J H, Chen L Y, Nguyen D N, Guo D, An Q and Cheng M J 2018 J. Phys. Chem. C 122 21192 |
[5] | Peng F, Yao Y, Liu H and Ma Y 2015 J. Phys. Chem. Lett. 6 2363 |
[6] | Steele B A and Oleynik I I 2016 Chem. Phys. Lett. 643 21 |
[7] | Steele B A, Stavrou E, Crowhurst J C, Zaug J M, Prakapenka V B and Oleynik I I 2017 Chem. Mater. 29 735 |
[8] | Laniel D, Weck G, Gaiffe G, Garbarino G and Loubeyre P 2018 J. Phys. Chem. Lett. 9 1600 |
[9] | Li J, Sun L, Wang X, Zhu H and Miao M 2018 J. Phys. Chem. C 122 22339 |
[10] | Xia K, Yuan J, Zheng X, Liu C, Gao H, Wu Q and Sun J 2019 J. Phys. Chem. Lett. 10 6166 |
[11] | Xia K, Zheng X, Yuan J, Liu C, Gao H, Wu Q and Sun J 2019 J. Phys. Chem. C 123 10205 |
[12] | Liu Z, Li D, Tian F, Duan D, Li H and Cui T 2020 Inorg. Chem. 59 8002 |
[13] | Yi W C, Zhao K F, Wang Z X, Yang B C, Liu Z and Liu X B 2020 ACS Omega 5 6221 |
[14] | Yi W, Zhao L, Liu X, Chen X, Zheng Y and Miao M 2020 Mater. & Des. 193 108820 |
[15] | Yuan J N, Xia K, Wu J F and Sun J 2021 Sci. Chin. Phys. Mech. & Astron. 64 218211 |
[16] | Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 |
[17] | Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 |
[18] | Wang H, Wang Y, Lv J, Li Q, Zhang L and Ma Y 2016 Comput. Mater. Sci. 112 406 |
[19] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[20] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[21] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[22] | Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 |
[23] | Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 |
[24] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[25] | Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702 |
[26] | Jiao F, Zhang C and Xie W 2020 J. Phys. Chem. C 124 19953 |
[27] | Suzuki K, Morita H, Kaneko T, Yoshida H and Fujimori H 1993 J. Alloys Compd. 201 11 |
[28] | Zhang J, Oganov A R, Li X and Niu H 2017 Phys. Rev. B 95 020103 |
[29] | Huang B, Wang B, Wu S, Guégan F, Hu W and Frapper G 2021 Chem. Mater. 33 5298 |
[30] | Huang S D, Shang C, Kang P L, Zhang X J and Liu Z P 2019 WWIREs: Comput. Mol. Sci. 9 e1415 |
[31] | Shang C, Zhang X J and Liu Z P 2014 Phys. Chem. Chem. Phys. 16 17845 |
[32] | Yi W C, Jiang X G, Yang T, Yang B C, Liu Z and Liu X B 2020 ACS Omega 5 24946 |
[33] | Zhang X, Yang J, Lu M and Gong X 2015 Struct. Chem. 26 785 |
[34] | Wozniak D R and Piercey D G 2020 Engineering 6 981 |
[35] | Lein M, Frunzke J, Timoshkin A and Frenking G 2001 Chem. Eur. J. 7 4155 |
[36] | Frenking G 2001 J. Organomet. Chem. 635 9 |
[37] | Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899 |
[38] | Deringer V L, Tchougréeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461 |
[39] | Maintz S, Deringer V L and Tchougréeff A L 2016 J. Comput. Chem. 37 1030 |
[40] | Hedin L 1965 Phys. Rev. 139 A796 |
[41] | Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102 |
[42] | Luo W D, Ismail-Beigi S, Cohen M L and Louie S G 2002 Phys. Rev. B 66 195215 |
[43] | Liu L, Zhang S and Zhang H 2022 Chin. Phys. Lett. 39 056102 |
[44] | Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|