Chin. Phys. Lett.  2022, Vol. 39 Issue (8): 083701    DOI: 10.1088/0256-307X/39/8/083701
ATOMIC AND MOLECULAR PHYSICS |
Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves
Zhi-Jin Tao1,2†, Li-Geng Yu1,2†, Peng Xu1,3*, Jia-Yi Hou1, Xiao-Dong He1, and Ming-Sheng Zhan1,3
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
2School of Physics and Technology, Wuhan University, Wuhan 430072, China
3Wuhan Institute of Quantum Technology, Wuhan 430206, China
Cite this article:   
Zhi-Jin Tao, Li-Geng Yu, Peng Xu et al  2022 Chin. Phys. Lett. 39 083701
Download: PDF(2595KB)   PDF(mobile)(2696KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dual-species single-atom array in optical tweezers has several advantages over the single-species atom array as a platform for quantum computing and quantum simulation. Thus, creating the defect-free dual-species single-atom array with atom numbers over hundreds is essential. As recent experiments demonstrated, one of the main difficulties lies in designing an efficient algorithm to rearrange the stochastically loaded dual-species atoms arrays into arbitrary demanded configurations. We propose a heuristic connectivity optimization algorithm to provide the near-fewest number of atom moves. Our algorithm introduces the concept of using articulation points in an undirected graph to optimize connectivity as a critical consideration for arranging the atom moving paths. Tested in array size of hundreds atoms and various configurations, our algorithm shows a high success rate ($>97\%$), low extra atom moves ratio, good scalability, and flexibility. Furthermore, we propose a complementary step to solve the problem of atom loss during the rearrangement.
Received: 19 April 2022      Published: 07 July 2022
PACS:  37.10.Gh (Atom traps and guides)  
  32.80.Hd (Auger effect)  
  87.55.kd (Algorithms)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/8/083701       OR      https://cpl.iphy.ac.cn/Y2022/V39/I8/083701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Jin Tao
Li-Geng Yu
Peng Xu
Jia-Yi Hou
Xiao-Dong He
and Ming-Sheng Zhan
[1] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502
[2] Henriet L, Beguin L, Signoles A, Lahaye T, B, Reymond G O and Jurczak C 2020 Quantum 4 327
[3] Saffman M 2019 Natl. Sci. Rev. 6 24
[4] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[5] Xia T, Lichtman M, Maller K, Carr A, Piotrowicz M, Isenhower L and Saffman M 2015 Phys. Rev. Lett. 114 100503
[6] Fu Z, Xu P, Sun Y, Liu Y, He X, Li X, Liu M, Li R, Wang J, Liu L and Zhan M S 2022 Phys. Rev. A 105 042430
[7] Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H and Lukin M D 2019 Phys. Rev. Lett. 123 170503
[8] Wu T Y, Kumar A, Giraldo F and Weiss D S 2019 Nat. Phys. 15 538
[9] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503
[10] Beterov I I and Saffman M 2015 Phys. Rev. A 92 042710
[11] Belyansky R, Young J T, Bienias P, Eldredge Z, Kaufman A M, Zoller P and Gorshkov A V 2019 Phys. Rev. Lett. 123 213603
[12] Auger J M, Bergamini S and Browne D E 2017 Phys. Rev. A 96 052320
[13] Weimer H, Muller M, Lesanovsky I, Zoller P and Buchler H P 2010 Nat. Phys. 6 382
[14] Browaeys A and Lahaye T 2020 Nat. Phys. 16 132
[15] Liu L R, Hood J D, Yu Y, Zhang J T, Hutzler N R, Rosenband T and Ni K K 2018 Science 360 900
[16] Liu L R, Hood J D, Yu Y, Zhang J T, Wang K, Lin Y W, Rosenband T and Ni K K 2019 Phys. Rev. X 9 021039
[17] Zhang J T, Yu Y, Cairncross W B, Wang K, Picard L R B, Hood J D, Lin Y W, Hutson J M and Ni K K 2020 Phys. Rev. Lett. 124 253401
[18] He X D, Wang K P, Zhuang J, Xu P, Gao X, Guo R J, Sheng C, Liu M, Wang J, Li J M, Shlyapnikov G V, Zhan M S 2020 Science 370 331
[19] Sheng C, Hou J Y, He X D, Wang K P, Guo R J, Mamat B, Xu P, Lin M, Wang J and Zhan M S 2022 Phys. Rev. Lett. 128 083202
[20] Lee W, Kim H and Ahn J 2017 Phys. Rev. A 95 053424
[21] Sheng C, Hou J, He X, Xu P, Wang K, Zhuang J, Li X, Liu M, Wang J and Zhan M S 2021 Phys. Rev. Res. 3 023008
[22] Schymik K N, Lienhard V, Barredo D, Scholl P, Williams H, Browaeys A and Lahaye T 2020 Phys. Rev. A 102 063107
[23] Barredo D, Léséleuc S, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021
[24] Barredo D, Lienhard V, Léséleuc S, Lahaye T and Browaeys A 2018 Nature 561 79
[25] Lee W, Kim H and Ahn J 2016 Opt. Express 24 9816
[26] Kumar A, Wu T Y, Giraldo F and Weiss D S 2018 Nature 561 83
[27] Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and Lukin M D 2016 Science 354 1024
[28] Singh K, Anand S, Pocklington A, Kemp J T and Bernien H 2022 Phys. Rev. X 12 011040
[29] Zhang J T, Picard L R B, Carincross W B, Wang K, Yu Y, Fang F and Ni K K 2022 Quantum Sci. Technol. 7 035006
Related articles from Frontiers Journals
[1] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 083701
[2] Jiang-Ling Yang, Yun Long, Wei-Wei Gao, Lan Jin, Zhan-Chun Zuo, Ru-Quan Wang. Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT[J]. Chin. Phys. Lett., 2018, 35(3): 083701
[3] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 083701
[4] ZHANG Feng, LONG Yun, YANG Jiang-Ling, MA Guo-Qiang, YIN Ji-Ping, WANG Ru-Quan. High-Performance Sodium Bose–Einstein Condensate Apparatus with a Hybrid Trap and Long-Distance Magnetic Transfer[J]. Chin. Phys. Lett., 2015, 32(12): 083701
[5] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 083701
[6] WANG Zhong-Kai, HU Dong, NIU Lin-Xiao, ZHANG Jia-Hua, CHEN Xu-Zong, ZHOU Xiao-Ji. The Mode Matching of Hybrid Trap by Frequency Calibration[J]. Chin. Phys. Lett., 2015, 32(5): 083701
[7] WANG Qiang, LIN Yi-Ge, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock[J]. Chin. Phys. Lett., 2014, 31(12): 083701
[8] GAO Kui-Yi, LUO Xin-Yu, JIA Feng-Dong, YU Cheng-Hui, ZHANG Feng, YIN Ji-Ping, XU Lin, YOU Li, WANG Ru-Quan. Ultra-High Efficiency Magnetic Transport of 87Rb Atoms in a Single Chamber Bose–Einstein Condensation Apparatus[J]. Chin. Phys. Lett., 2014, 31(06): 083701
[9] HE Yue-Hong, SHE Lei, CHEN Yi-He, YANG Yu-Na, LIU Hao, LI Jiao-Mei. Experimental Determination (~mHz) of the Ground-State Hyperfine Separation of Trapped 199Hg+ in a Hyperbolic Paul Trap[J]. Chin. Phys. Lett., 2012, 29(12): 083701
[10] WANG Xiao-Long, CHENG Bing, WU Bin, WANG Zhao-Ying, LIN Qiang** . A Simplified Cold Atom Source for 3-D MOT Loading[J]. Chin. Phys. Lett., 2011, 28(5): 083701
[11] ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai**, LI Wei-Dong . Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System[J]. Chin. Phys. Lett., 2011, 28(4): 083701
[12] WANG Qiang**, LIN Bai-Ke, ZHAO Yang, LI Ye, WANG Shao-Kai, WANG Min-Ming, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun . Magneto-Optical Trapping of 88Sr atoms with 689nm Laser[J]. Chin. Phys. Lett., 2011, 28(3): 083701
[13] XIA Tian, ZHOU Shu-Yu, CHEN Peng, LI Lin, HONG Tao, WANG Yu-Zhu. Continuous Imaging of a Single Neutral Atom in a Variant Magneto-Optical Trap\hyperlinks*[J]. Chin. Phys. Lett., 2010, 27(2): 083701
[14] WANG Shao-Kai, WANG Qiang, LIN Yi-Ge, WANG Min-Ming, LIN Bai-Ke, ZANGEr-Jun, LI Tian-Chu, FANG Zhan-Jun. Cooling and Trapping 88Sr Atoms with 461nm Laser[J]. Chin. Phys. Lett., 2009, 26(9): 083701
[15] ZHAO Peng-Yi, XIONG Zhuan-Xian, LONG Yun, HE Ling-Xiang, LÜ, Bao-Long. Realization of Green MOT for Ytterbium Atoms[J]. Chin. Phys. Lett., 2009, 26(8): 083701
Viewed
Full text


Abstract