ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves |
Zhi-Jin Tao1,2†, Li-Geng Yu1,2†, Peng Xu1,3*, Jia-Yi Hou1, Xiao-Dong He1, and Ming-Sheng Zhan1,3 |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2School of Physics and Technology, Wuhan University, Wuhan 430072, China 3Wuhan Institute of Quantum Technology, Wuhan 430206, China
|
|
Cite this article: |
Zhi-Jin Tao, Li-Geng Yu, Peng Xu et al 2022 Chin. Phys. Lett. 39 083701 |
|
|
Abstract Dual-species single-atom array in optical tweezers has several advantages over the single-species atom array as a platform for quantum computing and quantum simulation. Thus, creating the defect-free dual-species single-atom array with atom numbers over hundreds is essential. As recent experiments demonstrated, one of the main difficulties lies in designing an efficient algorithm to rearrange the stochastically loaded dual-species atoms arrays into arbitrary demanded configurations. We propose a heuristic connectivity optimization algorithm to provide the near-fewest number of atom moves. Our algorithm introduces the concept of using articulation points in an undirected graph to optimize connectivity as a critical consideration for arranging the atom moving paths. Tested in array size of hundreds atoms and various configurations, our algorithm shows a high success rate ($>97\%$), low extra atom moves ratio, good scalability, and flexibility. Furthermore, we propose a complementary step to solve the problem of atom loss during the rearrangement.
|
|
Received: 19 April 2022
Published: 07 July 2022
|
|
|
|
|
|
[1] | Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502 |
[2] | Henriet L, Beguin L, Signoles A, Lahaye T, B, Reymond G O and Jurczak C 2020 Quantum 4 327 |
[3] | Saffman M 2019 Natl. Sci. Rev. 6 24 |
[4] | Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313 |
[5] | Xia T, Lichtman M, Maller K, Carr A, Piotrowicz M, Isenhower L and Saffman M 2015 Phys. Rev. Lett. 114 100503 |
[6] | Fu Z, Xu P, Sun Y, Liu Y, He X, Li X, Liu M, Li R, Wang J, Liu L and Zhan M S 2022 Phys. Rev. A 105 042430 |
[7] | Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H and Lukin M D 2019 Phys. Rev. Lett. 123 170503 |
[8] | Wu T Y, Kumar A, Giraldo F and Weiss D S 2019 Nat. Phys. 15 538 |
[9] | Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503 |
[10] | Beterov I I and Saffman M 2015 Phys. Rev. A 92 042710 |
[11] | Belyansky R, Young J T, Bienias P, Eldredge Z, Kaufman A M, Zoller P and Gorshkov A V 2019 Phys. Rev. Lett. 123 213603 |
[12] | Auger J M, Bergamini S and Browne D E 2017 Phys. Rev. A 96 052320 |
[13] | Weimer H, Muller M, Lesanovsky I, Zoller P and Buchler H P 2010 Nat. Phys. 6 382 |
[14] | Browaeys A and Lahaye T 2020 Nat. Phys. 16 132 |
[15] | Liu L R, Hood J D, Yu Y, Zhang J T, Hutzler N R, Rosenband T and Ni K K 2018 Science 360 900 |
[16] | Liu L R, Hood J D, Yu Y, Zhang J T, Wang K, Lin Y W, Rosenband T and Ni K K 2019 Phys. Rev. X 9 021039 |
[17] | Zhang J T, Yu Y, Cairncross W B, Wang K, Picard L R B, Hood J D, Lin Y W, Hutson J M and Ni K K 2020 Phys. Rev. Lett. 124 253401 |
[18] | He X D, Wang K P, Zhuang J, Xu P, Gao X, Guo R J, Sheng C, Liu M, Wang J, Li J M, Shlyapnikov G V, Zhan M S 2020 Science 370 331 |
[19] | Sheng C, Hou J Y, He X D, Wang K P, Guo R J, Mamat B, Xu P, Lin M, Wang J and Zhan M S 2022 Phys. Rev. Lett. 128 083202 |
[20] | Lee W, Kim H and Ahn J 2017 Phys. Rev. A 95 053424 |
[21] | Sheng C, Hou J, He X, Xu P, Wang K, Zhuang J, Li X, Liu M, Wang J and Zhan M S 2021 Phys. Rev. Res. 3 023008 |
[22] | Schymik K N, Lienhard V, Barredo D, Scholl P, Williams H, Browaeys A and Lahaye T 2020 Phys. Rev. A 102 063107 |
[23] | Barredo D, Léséleuc S, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021 |
[24] | Barredo D, Lienhard V, Léséleuc S, Lahaye T and Browaeys A 2018 Nature 561 79 |
[25] | Lee W, Kim H and Ahn J 2016 Opt. Express 24 9816 |
[26] | Kumar A, Wu T Y, Giraldo F and Weiss D S 2018 Nature 561 83 |
[27] | Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and Lukin M D 2016 Science 354 1024 |
[28] | Singh K, Anand S, Pocklington A, Kemp J T and Bernien H 2022 Phys. Rev. X 12 011040 |
[29] | Zhang J T, Picard L R B, Carincross W B, Wang K, Yu Y, Fang F and Ni K K 2022 Quantum Sci. Technol. 7 035006 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|