GENERAL |
|
|
|
|
Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty |
Bing-Kun Lu1,2, Zhen Sun1,2, Tao Yang1, Yi-Ge Lin1*, Qiang Wang1, Ye Li1, Fei Meng1, Bai-Ke Lin1, Tian-Chu Li1, and Zhan-Jun Fang1* |
1Division of Time and Frequency Metrology, National Institute of Metrology, Beijing 100029, China 2Department of Precision Instrument, Tsinghua University, Beijing 100084, China
|
|
Cite this article: |
Bing-Kun Lu, Zhen Sun, Tao Yang et al 2022 Chin. Phys. Lett. 39 080601 |
|
|
Abstract NIM-Sr2 optical lattice clock has been developed on the Changping campus of National Institute of Metrology (NIM). Considering the limitations in NIM-Sr1, several improved parts have been designed including a differential pumping stage in the vacuum system, a permanent magnet Zeeman slower, water-cooled anti-Helmholtz coils, an extended viewport for Zeeman slower, etc. A clock laser with a short-time stability better than $3\times10^{-16}$ is realized based on a self-designed 30-cm-long ultra-low expansion cavity. The systematic frequency shift has been evaluated to an uncertainty of $7.2\times 10^{-18}$, with the uncertainty of BBR shift and the collisional frequency shift being an order of magnitude lower than the last evaluation of NIM-Sr1.
|
|
Received: 22 April 2022
Published: 20 July 2022
|
|
PACS: |
06.30.Ft
|
(Time and frequency)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
|
|
|
[1] | Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185 |
[2] | Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001 |
[3] | Chou C, Hume D, Koelemeij J, Wineland D and Rosenband T 2010 Phys. Rev. Lett. 104 070802 |
[4] | Deschênes J D, Sinclair L C, Giorgetta F R, Swann W C, Baumann E, Bergeron H, Cermak M, Coddington I and Newbury N R 2016 Phys. Rev. X 6 021016 |
[5] | McGrew W F, Zhang X, Fasano R J et al. 2018 Nature 564 87 |
[6] | Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043 |
[7] | Derevianko A and Pospelov M 2014 Nat. Phys. 10 933 |
[8] | Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188 |
[9] | Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601 |
[10] | Li Y, Lin Y, Wang Q, Yang T, Sun Z, Zang E and Fang Z 2018 Chin. Opt. Lett. 16 051402 |
[11] | Lin Y G, Wang Q, Meng F et al. 2021 Metrologia 58 035010 |
[12] | Lin Y G, Wang Q, Li Y et al. 2013 Chin. Phys. Lett. 30 014206 |
[13] | Shaokai W, Yuanyang Z, Baike L, Minming W and Zhanjun F 2008 Conference on Precision Electromagnetic Measurements Digest, 8–13 June 2008, Broomfield, CO, p 316 |
[14] | Wang Q, Lin Y G, Gao F L, Li Y, Lin B K, Meng F, Zang E J, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 100701 |
[15] | Koller S B, Grotti J, Vogt S, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat C 2017 Phys. Rev. Lett. 118 073601 |
[16] | Falke S, Lemke N, Grebing C et al. 2014 New J. Phys. 16 073023 |
[17] | Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004 |
[18] | Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703 |
[19] | Abdel-Hafiz M, Ablewski P, Al-Masoudi A et al. 2019 arXiv:1906.11495 [physics] |
[20] | BIPM 2008 JCGM 100:2008(E), Evaluation of measurement data—Guide to the expression of uncertainty in measurement, produced by Working Group 1 of the Joint Committee for Guides in Metrology (JCGM/WG 1) |
[21] | Li Y, Lin Y G, Wang Q et al. 2014 Chin. Phys. Lett. 31 024207 |
[22] | Numata K, Kemery A and Camp J 2004 Phys. Rev. Lett. 93 250602 |
[23] | Peik E, Schneider T and Tamm C 2006 J. Phys. B 39 145 |
[24] | Notcutt M, Ma L S, Ludlow A D, Foreman S M, Ye J and Hall J L 2006 Phys. Rev. A 73 031804 |
[25] | Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M and Ye J 2011 Science 331 1043 |
[26] | Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202 |
[27] | Hobson R, Bowden W, Vianello A, Silva A, Baynham C F A, Margolis H S, Baird P E G, Gill P and Hill I R 2020 Metrologia 57 065026 |
[28] | Hisai Y, Akamatsu D, Kobayashi T, Hosaka K, Inaba H, Hong F L and Yasuda M 2021 Metrologia 58 015008 |
[29] | Lodewyck J, Zawada M, Lorini L, Gurov M, and Lemonde P 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 411 |
[30] | Alves B X R, Foucault Y, Vallet G and Lodewyck J, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 14–18 April 2019, Orlando, FL, USA, p 1 |
[31] | Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004 |
[32] | Hill I R and London I C 2012 Development of an Apparatus for a Strontium Optical Lattice Optical Frequency Standard, PhD Dissertation (London: Imperial College London) |
[33] | Nicholson T L et al. 2015 Nat. Commun. 6 6896 |
[34] | Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|