Chin. Phys. Lett.  2022, Vol. 39 Issue (8): 080601    DOI: 10.1088/0256-307X/39/8/080601
GENERAL |
Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty
Bing-Kun Lu1,2, Zhen Sun1,2, Tao Yang1, Yi-Ge Lin1*, Qiang Wang1, Ye Li1, Fei Meng1, Bai-Ke Lin1, Tian-Chu Li1, and Zhan-Jun Fang1*
1Division of Time and Frequency Metrology, National Institute of Metrology, Beijing 100029, China
2Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Cite this article:   
Bing-Kun Lu, Zhen Sun, Tao Yang et al  2022 Chin. Phys. Lett. 39 080601
Download: PDF(3480KB)   PDF(mobile)(3482KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract NIM-Sr2 optical lattice clock has been developed on the Changping campus of National Institute of Metrology (NIM). Considering the limitations in NIM-Sr1, several improved parts have been designed including a differential pumping stage in the vacuum system, a permanent magnet Zeeman slower, water-cooled anti-Helmholtz coils, an extended viewport for Zeeman slower, etc. A clock laser with a short-time stability better than $3\times10^{-16}$ is realized based on a self-designed 30-cm-long ultra-low expansion cavity. The systematic frequency shift has been evaluated to an uncertainty of $7.2\times 10^{-18}$, with the uncertainty of BBR shift and the collisional frequency shift being an order of magnitude lower than the last evaluation of NIM-Sr1.
Received: 22 April 2022      Published: 20 July 2022
PACS:  06.30.Ft (Time and frequency)  
  42.62.Fi (Laser spectroscopy)  
  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Jk (Atoms in optical lattices)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/8/080601       OR      https://cpl.iphy.ac.cn/Y2022/V39/I8/080601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bing-Kun Lu
Zhen Sun
Tao Yang
Yi-Ge Lin
Qiang Wang
Ye Li
Fei Meng
Bai-Ke Lin
Tian-Chu Li
and Zhan-Jun Fang
[1] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
[2] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[3] Chou C, Hume D, Koelemeij J, Wineland D and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[4] Deschênes J D, Sinclair L C, Giorgetta F R, Swann W C, Baumann E, Bergeron H, Cermak M, Coddington I and Newbury N R 2016 Phys. Rev. X 6 021016
[5] McGrew W F, Zhang X, Fasano R J et al. 2018 Nature 564 87
[6] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[7] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[8] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188
[9] Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
[10] Li Y, Lin Y, Wang Q, Yang T, Sun Z, Zang E and Fang Z 2018 Chin. Opt. Lett. 16 051402
[11] Lin Y G, Wang Q, Meng F et al. 2021 Metrologia 58 035010
[12] Lin Y G, Wang Q, Li Y et al. 2013 Chin. Phys. Lett. 30 014206
[13] Shaokai W, Yuanyang Z, Baike L, Minming W and Zhanjun F 2008 Conference on Precision Electromagnetic Measurements Digest, 8–13 June 2008, Broomfield, CO, p 316
[14] Wang Q, Lin Y G, Gao F L, Li Y, Lin B K, Meng F, Zang E J, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 100701
[15] Koller S B, Grotti J, Vogt S, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat C 2017 Phys. Rev. Lett. 118 073601
[16] Falke S, Lemke N, Grebing C et al. 2014 New J. Phys. 16 073023
[17] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[18] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703
[19] Abdel-Hafiz M, Ablewski P, Al-Masoudi A et al. 2019 arXiv:1906.11495 [physics]
[20]BIPM 2008 JCGM 100:2008(E), Evaluation of measurement data—Guide to the expression of uncertainty in measurement, produced by Working Group 1 of the Joint Committee for Guides in Metrology (JCGM/WG 1)
[21] Li Y, Lin Y G, Wang Q et al. 2014 Chin. Phys. Lett. 31 024207
[22] Numata K, Kemery A and Camp J 2004 Phys. Rev. Lett. 93 250602
[23] Peik E, Schneider T and Tamm C 2006 J. Phys. B 39 145
[24] Notcutt M, Ma L S, Ludlow A D, Foreman S M, Ye J and Hall J L 2006 Phys. Rev. A 73 031804
[25] Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M and Ye J 2011 Science 331 1043
[26] Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202
[27] Hobson R, Bowden W, Vianello A, Silva A, Baynham C F A, Margolis H S, Baird P E G, Gill P and Hill I R 2020 Metrologia 57 065026
[28] Hisai Y, Akamatsu D, Kobayashi T, Hosaka K, Inaba H, Hong F L and Yasuda M 2021 Metrologia 58 015008
[29] Lodewyck J, Zawada M, Lorini L, Gurov M, and Lemonde P 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 411
[30] Alves B X R, Foucault Y, Vallet G and Lodewyck J, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 14–18 April 2019, Orlando, FL, USA, p 1
[31] Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004
[32] Hill I R and London I C 2012 Development of an Apparatus for a Strontium Optical Lattice Optical Frequency Standard, PhD Dissertation (London: Imperial College London)
[33] Nicholson T L et al. 2015 Nat. Commun. 6 6896
[34] Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801
Related articles from Frontiers Journals
[1] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 080601
[2] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 080601
[3] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 080601
[4] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 080601
[5] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 080601
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 080601
[7] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 080601
[8] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 080601
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 080601
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 080601
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 080601
[12] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 080601
[13] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 080601
[14] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 080601
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 080601
Viewed
Full text


Abstract