Chin. Phys. Lett.  2022, Vol. 39 Issue (8): 083401    DOI: 10.1088/0256-307X/39/8/083401
ATOMIC AND MOLECULAR PHYSICS |
Three-Body Recombination of Cold $^{3}$He–$^{3}$He–T$^-$ System
Ming-Ming Zhao1, Li-Hang Li2, Bo-Wen Si1, Bin-Bin Wang3*, Bina Fu4, and Yong-Chang Han1,5*
1Department of Physics, Dalian University of Technology, Dalian 116024, China
2Beijing Institute of Radio Measurement, Beijing 100854, China
3Physics and Space Science College, China West Normal University, Nanchong 637009, China
4State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
5DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
Cite this article:   
Ming-Ming Zhao, Li-Hang Li, Bo-Wen Si et al  2022 Chin. Phys. Lett. 39 083401
Download: PDF(820KB)   PDF(mobile)(824KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The atom-atom-anion three-body recombination (TBR) and collision induced dissociation (CID) processes of the $^{3}$He–$^{3}$He–T$^-$ system at ultracold temperatures are investigated by solving the Schrödinger equation in the adiabatic hyperspherical representation. The variations of the TBR and CID rates with the collision energies in the ultracold temperatures are obtained. It is found that the $J^{\varPi}=1^-$ symmetry dominates the TBR and CID processes in most of the considered collision energy range. The rate of TBR (CID) into (from) the $l=1$ anion is larger than those for the $l=0$ and $l=2$ anions, with the $l$ representing the rotational quantum number of $^{3}$HeT$^-$. This can be understood via the nonadiabatic couplings among the different channels.
Received: 05 May 2022      Published: 16 July 2022
PACS:  34.50.-s (Scattering of atoms and molecules)  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/8/083401       OR      https://cpl.iphy.ac.cn/Y2022/V39/I8/083401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Ming Zhao
Li-Hang Li
Bo-Wen Si
Bin-Bin Wang
Bina Fu
and Yong-Chang Han
[1] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[2] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
[3] Luo X Y, Zuo Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620
[4] Regal C A, Ticknor C, Bohn J L and Jin D S 2003 Phys. Rev. Lett. 90 053201
[5] Suno H and Esry B D 2009 Phys. Rev. A 80 062702
[6] D'Incao J P and Esry B D 2005 Phys. Rev. Lett. 94 213201
[7] Suno H, Esry B D, Greene C H and Burke J P 2002 Phys. Rev. A 65 042725
[8] Suno H 2017 Phys. Rev. A 96 012508
[9] Zipkes C, Palzer S, Sias C and Köhl M 2010 Nature 464 388
[10] Schmid S, Härter A and Denschlag J H 2010 Phys. Rev. Lett. 105 133202
[11] Hall F H J, Aymar M, Boulouta-Maata N, Dulieu O and Willitsch S 2011 Phys. Rev. Lett. 107 243202
[12] Grier A T, Certina M, Orucevic F and Vuletic V 2009 Phys. Rev. Lett. 102 223201
[13] Ravi K, Lee S, Sharma A, Werth G and Rangwala S A 2012 Nat. Commun. 3 1126
[14] Hall F H J and Willitsch S 2012 Phys. Rev. Lett. 109 233202
[15] Härter A, Krükow A, Brunner A, Schnitzler W, Schnid S and Denschlag J H 2012 Phys. Rev. Lett. 109 123201
[16] Neves P N B, Conde C A N and Távora L M N 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 580 66
[17] Neves P N B, Conde C A N and Távora L M N 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 619 75
[18] Jones J D C, Lister D G, Wareing D P and Twiddy J 1980 J. Phys. B 13 3247
[19] Papanyan V O, Nersisyan G T, Ter-Avetisyan S A and Tittle F K 1995 J. Phys. B 28 807
[20] Krükow A, Mohammadi A, Härter A, Denschlag J H, Pérez-Ríos J and Greene C H 2016 Phys. Rev. Lett. 116 193201
[21] Pérez-Ríos J and Greene C H 2015 J. Chem. Phys. 143 041105
[22] Wang B B 2021 Phys. Chem. Chem. Phys. 23 14617
[23] Pérez-Ríos J, Ragole S, Wang J and Greene C H 2014 J. Chem. Phys. 140 044307
[24] Wang B B, Jing S H and Zeng T X 2019 J. Chem. Phys. 150 094301
[25] Niles F E and Robertson W W 1965 J. Chem. Phys. 43 1076
[26] Mahan B H 1965 J. Chem. Phys. 43 3080
[27] Krükow A, Mohammadi A, Härter A and Denschlag J H 2016 Phys. Rev. A 94 030701
[28] Härter A and Denschlag J H 2014 Contemp. Phys. 55 33
[29] Zhao M M, Wang B B and Han Y C 2022 Phys. Rev. Res. 4 013030
[30] Wang B B, Han Y C, Gao W and Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926
[31] Pack R T, Walker R B and Kendrick B K 1998 J. Chem. Phys. 109 6701
[32] Takayanagi T and Wada A 2002 Chem. Phys. 277 313
[33] Suno H and Esry B D 2008 Phys. Rev. A 78 062701
[34] Johnson B R 1980 J. Chem. Phys. 73 5051
[35] Otto R, Ma J Y, Ray A W, Daluz J S, Li J, Guo H and Continetti R E 2014 Science 343 396
[36] Aymar M, Greene C H and Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015
[37]Burke Jr. J P 1999 PhD Dissertation (Boulder: University of Colorado)
[38] Zhang J Y, Xu T, Ge Z W, Zhao J, Gao S B and Meng Q T 2020 Chin. Phys. B 29 063101
[39] Huang J Y, Chen J, Liu S and Zhang D H 2020 J. Phys. Chem. Lett. 11 8560
[40] Kendrick B K, Pack R T, Walker R B and Hayes E F 1999 J. Chem. Phys. 110 6673
[41] Johnson B R 1983 J. Chem. Phys. 79 1916
[42] Lepetit B, Peng Z and Kuppermann A 1990 Chem. Phys. Lett. 166 572
[43] Jeziorska M, Cencek W, Patkowski K, Jeziorski B and Szalewicz K 2007 J. Chem. Phys. 127 124303
[44] Casalegno M, Mella M, Morosi G and Bressanini D 2000 J. Chem. Phys. 112 69
[45] Suno H and Esry B D 2010 Phys. Rev. A 82 062521
[46] Nielsen E, Fedorov D V, Jensen A S and Garrido E 2001 Phys. Rep. 347 373
[47] Wang K D, Zhang H X, Huang X T, Liu Y F and Sun J F 2018 Phys. Rev. A 97 012703
[48] Wang Y, D'Incao J P and Esry B D 2011 Phys. Rev. A 83 032703
[49] Esry K D, Greene C H and Suno H 2001 Phys. Rev. A 65 010705
Related articles from Frontiers Journals
[1] Xiaohong Li, Bocheng Ding, Yunfei Feng, Ruichang Wu, Lifang Tian, Jianye Huang, and Xiaojing Liu. High Energy Inner Shell Photoelectron Diffraction in CO$_2$[J]. Chin. Phys. Lett., 2022, 39(3): 083401
[2] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 083401
[3] Yong Gao, Xiao-Long Zhu, Shao-Feng Zhang, Rui-Tian Zhang, Wen-Tian Feng, Da-Long Guo, Bin Li, Dong-Mei Zhao, Han-Bing Wang, Zhong-Kui Huang, Shun-Cheng Yan, Dong-Bin Qian, Xin-Wen Ma. Signature of Single Binary Encounter in Intermediate Energy He$^{2+}$–Ar Collisions$^*$[J]. Chin. Phys. Lett., 2016, 33(07): 083401
[4] LU Chen-Wen, AN Wen-Fang, SUN Shi-Yan, JIA Xiang-Fu. Nucleus–Nucleus Effects in Fully Differential Cross Sections for Energetic C6++He Collisions with Small Momentum Transfer[J]. Chin. Phys. Lett., 2015, 32(09): 083401
[5] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 083401
[6] DENG Xue-Wei, WANG Fang, JIA Huai-Ting, XIANG Yong, FENG Bin, LI Ke-Yu, ZHOU Li-Dan. Temporal, Spectral and Spatial Characterization of High-Energy Laser Pulse with Small Bandwidth Propagating through Long Path[J]. Chin. Phys. Lett., 2012, 29(12): 083401
[7] WANG Jing, ZHANG Xiao-Min, HAN Wei, LI Fu-Quan, ZHOU Li-Dan**, FENG Bin, XIANG Yong . Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths[J]. Chin. Phys. Lett., 2011, 28(8): 083401
[8] WU Ji-Cheng, WANG Mei-Shan**, YANG Chuan-Lu, LI Xiao-Hu, CHEN Xiao-Qiong . Theoretical Study of the Stereodynamics of the Reaction C(3P)+CH(X2Π) and Its Isotopic Variants[J]. Chin. Phys. Lett., 2011, 28(6): 083401
[9] HU Qiu-Bo, ZHANG Yong-Sheng, SUN Jin-Feng, YU Ke . Elastic Scattering between Ultracold 23Na and 85Rb Atoms in the Triplet State[J]. Chin. Phys. Lett., 2011, 28(4): 083401
[10] BAI Xue, ZHAO Jun, WEI Bao-Ren, ZHANG Xue-Mei, **. Single-Electron Detachment for Ti-, Fe-, Co-, Ni-, and Cu-, in Collision with Ar[J]. Chin. Phys. Lett., 2010, 27(11): 083401
[11] WANG Ping. Effect of Reagent Vibrational and Rotational Excitation on the F+H2 Reaction: Theoretical Study of the Stereodynamics Using Quasi-Classical Trajectory Method[J]. Chin. Phys. Lett., 2010, 27(8): 083401
[12] HU Qiu-Bo, ZHANG Yong-Sheng, SUN Jin-Feng. Elastic Scattering of Ultracold 23Na and 39K Atoms in the Singlet State[J]. Chin. Phys. Lett., 2010, 27(2): 083401
[13] DU Bing-Ge, SUN Jin-Feng, ZHANG Ji-Cai, ZHANG Ying, LI Wei, ZHU Zun-Lue. Variable Phase Method Used to Calculate Ultracold Scattering Properties of 7Li33Cs[J]. Chin. Phys. Lett., 2008, 25(10): 083401
[14] MA Er-Jun, , MA Yu-Gang, CAI Xiang-Zhou, FANG De-Qing, SHEN Wen-Qing, TIAN Wen-Dong. Electron Scattering by C4H10 and C6H6 in the Energy Range 100--1000eV[J]. Chin. Phys. Lett., 2008, 25(1): 083401
[15] ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Bright/Dark Solitons in Bose--Einstein Condensates with Time-Dependent Scattering Length and External Potential[J]. Chin. Phys. Lett., 2008, 25(1): 083401
Viewed
Full text


Abstract