CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window |
Yuan-Fang Yu1, Ye Zhang2, Fan Zhong2, Lin Bai1, Hui Liu2, Jun-Peng Lu1*, and Zhen-Hua Ni1* |
1School of Physics, Southeast University, Nanjing 211189, China 2National Laboratory of Solid State Microstructures & School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Yuan-Fang Yu, Ye Zhang, Fan Zhong et al 2022 Chin. Phys. Lett. 39 058501 |
|
|
Abstract The first atmospheric window of 3–5 µm in the mid-infrared (MIR) spectral range pertains to crucial application fields, with particular scientific and technological importance. However, conventional narrow-bandgap semiconductors operating at this band, represented by mercury cadmium telluride and indium antimonide, suffer from limited specific detectivity at room temperature and hindered optoelectronic integration. In this study, a plasmonic hot electron-empowered MIR photodetector based on Al-doped ZnO (AZO)/bi-layer graphene heterostructure is demonstrated. Free electrons oscillate coherently in AZO disk arrays, resulting in strong localized surface plasmon resonance (LSPR) in the MIR region. The photoelectric conversion efficiency at 3–5 µm is significantly improved due to plasmon-induced hot-electron extraction and LSPR-enhanced light absorption. The specific detectivity reaches about $1.4 \times 10^{11}$ Jones and responsivity is up to 4712.3 A/W at wavelength of 3 µm at room temperature. The device's specific detectivity is among the highest performance of commercial state-of-the-art photodetectors and superior to most of the other 2D materials based photodetectors in the MIR region. These results demonstrate that a plasmonic heavily doped metal oxides/2D material heterostructure is a suitable architecture for constructing highly sensitive room-temperature MIR photodetectors.
|
|
Received: 03 March 2022
Editors' Suggestion
Published: 26 April 2022
|
|
PACS: |
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
95.85.Hp
|
(Infrared (3-10 μm))
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
|
|
|
[1] | Lu X W, Jiang P, and Bao X H 2019 Nat. Commun. 10 138 |
[2] | Cao G Q, Wang F, Peng M, Shao X M, Yang B, Hu W D, Li X, Chen J, Shan Y B, Wu P S, Hu L G, Liu R, Gong H M, Cong C X, and Qiu Z J 2020 Adv. Electron. Mater. 6 1901007 |
[3] | Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, and Hu W D 2022 Adv. Mater. 34 2107772 |
[4] | Lei W, Antoszewski J, and Faraone L 2015 Appl. Phys. Rev. 2 041303 |
[5] | Xu J B, Hu J X, Wang R B, Li Q, Li W W, Guo Y F, Liu F K, Ullah Z, Wen L, and Liu L W 2017 Appl. Phys. Lett. 111 051106 |
[6] | Xia F N, Wang H, Xiao D, Dubey M, and Ramasubramaniam A 2014 Nat. Photon. 8 899 |
[7] | Yu Y F, Miao F, He J, and Ni Z H 2017 Chin. Phys. B 26 036801 |
[8] | Fang H H and Hu W D 2017 Adv. Sci. 4 1700323 |
[9] | Zhang P, Zhang Y, Wang W H, Gao L, Li G F, Zhang S, Lu J P, Yu Y F, and Zhang J L 2021 Nanotechnology 32 415202 |
[10] | Yu Y F, Li Z Z, Wang W H, Guo X T, Jiang J, Nan H Y, and Ni Z H 2017 J. Semicond. 38 033003 |
[11] | Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, and Polini M 2014 Nat. Nanotechnol. 9 780 |
[12] | Xia Y N and Halas N J 2005 MRS Bull. 30 338 |
[13] | Clavero C 2014 Nat. Photon. 8 95 |
[14] | Yu Y F and Ni Z H 2019 Laser & Optoelectron. Prog. 56 202403 (in Chinese) |
[15] | Wang W, Klots A, Prasai D, Yang Y, Bolotin K I, and Valentine J 2015 Nano Lett. 15 7440 |
[16] | Calzolari A, Ruini A, and Catellani A 2014 ACS Photon. 1 703 |
[17] | Lin J Y, Zhong K D, and Lee P T 2016 Opt. Express 24 5125 |
[18] | Paria D, Vadakkumbatt V, Ravindra P, Avasthi S, and Ghosh A 2021 Nanotechnology 32 315202 |
[19] | Aizpurua J, Bryant G W, Richter L J, de García A F J, Kelley B K, and Mallouk T 2005 Phys. Rev. B 71 235420 |
[20] | Gu Y Y, Wang Y F, Xia J, and Meng X M 2020 Chin. Phys. Lett. 37 048101 |
[21] | Brongersma M L, Halas N J, and Nordlander P 2015 Nat. Nanotechnol. 10 25 |
[22] | Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, and Sood A K 2008 Nat. Nanotechnol. 3 210 |
[23] | Yan J, Zhang Y B, Kim P, and Pinczuk A 2007 Phys. Rev. Lett. 98 166802 |
[24] | Ferrari A C 2007 Solid State Commun. 143 47 |
[25] | Wang F K, Zhang Y, Gao Y, Luo P, Su J W, Han W, Liu K L, Li H Q, and Zhai T Y 2019 Small 15 1901347 |
[26] | Buscema M, Island J O, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S, and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691 |
[27] | Zhang M and Yeow J T W 2020 Carbon 156 339 |
[28] | Yan W, Shresha V R, Jeangros Q, Azar N S, Balendhran S, Ballif C, Crozier K, and Bullock J 2020 ACS Nano 14 13645 |
[29] | Safaei A, Chandra S, Shabbir M W, Leuenberger M N, and Chanda D 2019 Nat. Commun. 10 3498 |
[30] | Yu X, Li Y, Hu X, Zhang D, Tao Y, Liu Z, He Y, Haque M A, Liu Z, Wu T, and Wang Q J 2018 Nat. Commun. 9 4299 |
[31] | Zeng L, Wu D, Jie J, Ren X, Hu X, Lau S P, Chai Y, and Tsang Y H 2020 Adv. Mater. 32 2004412 |
[32] | Long M S, Gao A Y, Wang P, Xia H, Ott C, Pan C, Fu Y J, Liu E F, Chen X S, Lu W, Nilges T, Xu J B, XM W, Hu W D, and Miao F 2017 Sci. Adv. 3 e1700589 |
[33] | Ho V X, Wang Y, Cooney M P, and Vinh N Q 2021 Nanoscale 13 10526 |
[34] | Ni Z Y, Ma L L, Du S C, Xu Y, Yuan M, Fang H H, Wang Z, Xu M S, Li D S, Yang J Y, Hu W D, Pi X D, and Yang D R 2017 ACS Nano 11 9854 |
[35] | Chen Y F, Wang Y, Wang Z, Gu Y, Ye Y, Chai X L, Ye J F, Chen Y, Xie R Z, Zhou Y, Hu Z G, Li Q, Zhang L L, Wang F, Wang P, Miao J S, Wang J L, Chen X S, Lu W, Zhou P, and Hu W D 2021 Nat. Electron. 4 357 |
[36] | Li M J, Fu J H, Xu Q, and Sum T C 2019 Adv. Mater. 31 1802486 |
[37] | Li M J, Bhaumik S, Goh T W, Kumar M S, Yantara N, Gratzel M, Mhaisalkar S, Mathews N, and Sum T C 2017 Nat. Commun. 8 14350 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|