Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 058501    DOI: 10.1088/0256-307X/39/5/058501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window
Yuan-Fang Yu1, Ye Zhang2, Fan Zhong2, Lin Bai1, Hui Liu2, Jun-Peng Lu1*, and Zhen-Hua Ni1*
1School of Physics, Southeast University, Nanjing 211189, China
2National Laboratory of Solid State Microstructures & School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Yuan-Fang Yu, Ye Zhang, Fan Zhong et al  2022 Chin. Phys. Lett. 39 058501
Download: PDF(1671KB)   PDF(mobile)(1967KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The first atmospheric window of 3–5 µm in the mid-infrared (MIR) spectral range pertains to crucial application fields, with particular scientific and technological importance. However, conventional narrow-bandgap semiconductors operating at this band, represented by mercury cadmium telluride and indium antimonide, suffer from limited specific detectivity at room temperature and hindered optoelectronic integration. In this study, a plasmonic hot electron-empowered MIR photodetector based on Al-doped ZnO (AZO)/bi-layer graphene heterostructure is demonstrated. Free electrons oscillate coherently in AZO disk arrays, resulting in strong localized surface plasmon resonance (LSPR) in the MIR region. The photoelectric conversion efficiency at 3–5 µm is significantly improved due to plasmon-induced hot-electron extraction and LSPR-enhanced light absorption. The specific detectivity reaches about $1.4 \times 10^{11}$ Jones and responsivity is up to 4712.3 A/W at wavelength of 3 µm at room temperature. The device's specific detectivity is among the highest performance of commercial state-of-the-art photodetectors and superior to most of the other 2D materials based photodetectors in the MIR region. These results demonstrate that a plasmonic heavily doped metal oxides/2D material heterostructure is a suitable architecture for constructing highly sensitive room-temperature MIR photodetectors.
Received: 03 March 2022      Editors' Suggestion Published: 26 April 2022
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  95.85.Hp (Infrared (3-10 μm))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/058501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/058501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan-Fang Yu
Ye Zhang
Fan Zhong
Lin Bai
Hui Liu
Jun-Peng Lu
and Zhen-Hua Ni
[1] Lu X W, Jiang P, and Bao X H 2019 Nat. Commun. 10 138
[2] Cao G Q, Wang F, Peng M, Shao X M, Yang B, Hu W D, Li X, Chen J, Shan Y B, Wu P S, Hu L G, Liu R, Gong H M, Cong C X, and Qiu Z J 2020 Adv. Electron. Mater. 6 1901007
[3] Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, and Hu W D 2022 Adv. Mater. 34 2107772
[4] Lei W, Antoszewski J, and Faraone L 2015 Appl. Phys. Rev. 2 041303
[5] Xu J B, Hu J X, Wang R B, Li Q, Li W W, Guo Y F, Liu F K, Ullah Z, Wen L, and Liu L W 2017 Appl. Phys. Lett. 111 051106
[6] Xia F N, Wang H, Xiao D, Dubey M, and Ramasubramaniam A 2014 Nat. Photon. 8 899
[7] Yu Y F, Miao F, He J, and Ni Z H 2017 Chin. Phys. B 26 036801
[8] Fang H H and Hu W D 2017 Adv. Sci. 4 1700323
[9] Zhang P, Zhang Y, Wang W H, Gao L, Li G F, Zhang S, Lu J P, Yu Y F, and Zhang J L 2021 Nanotechnology 32 415202
[10] Yu Y F, Li Z Z, Wang W H, Guo X T, Jiang J, Nan H Y, and Ni Z H 2017 J. Semicond. 38 033003
[11] Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, and Polini M 2014 Nat. Nanotechnol. 9 780
[12] Xia Y N and Halas N J 2005 MRS Bull. 30 338
[13] Clavero C 2014 Nat. Photon. 8 95
[14] Yu Y F and Ni Z H 2019 Laser & Optoelectron. Prog. 56 202403 (in Chinese)
[15] Wang W, Klots A, Prasai D, Yang Y, Bolotin K I, and Valentine J 2015 Nano Lett. 15 7440
[16] Calzolari A, Ruini A, and Catellani A 2014 ACS Photon. 1 703
[17] Lin J Y, Zhong K D, and Lee P T 2016 Opt. Express 24 5125
[18] Paria D, Vadakkumbatt V, Ravindra P, Avasthi S, and Ghosh A 2021 Nanotechnology 32 315202
[19] Aizpurua J, Bryant G W, Richter L J, de García A F J, Kelley B K, and Mallouk T 2005 Phys. Rev. B 71 235420
[20] Gu Y Y, Wang Y F, Xia J, and Meng X M 2020 Chin. Phys. Lett. 37 048101
[21] Brongersma M L, Halas N J, and Nordlander P 2015 Nat. Nanotechnol. 10 25
[22] Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, and Sood A K 2008 Nat. Nanotechnol. 3 210
[23] Yan J, Zhang Y B, Kim P, and Pinczuk A 2007 Phys. Rev. Lett. 98 166802
[24] Ferrari A C 2007 Solid State Commun. 143 47
[25] Wang F K, Zhang Y, Gao Y, Luo P, Su J W, Han W, Liu K L, Li H Q, and Zhai T Y 2019 Small 15 1901347
[26] Buscema M, Island J O, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S, and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691
[27] Zhang M and Yeow J T W 2020 Carbon 156 339
[28] Yan W, Shresha V R, Jeangros Q, Azar N S, Balendhran S, Ballif C, Crozier K, and Bullock J 2020 ACS Nano 14 13645
[29] Safaei A, Chandra S, Shabbir M W, Leuenberger M N, and Chanda D 2019 Nat. Commun. 10 3498
[30] Yu X, Li Y, Hu X, Zhang D, Tao Y, Liu Z, He Y, Haque M A, Liu Z, Wu T, and Wang Q J 2018 Nat. Commun. 9 4299
[31] Zeng L, Wu D, Jie J, Ren X, Hu X, Lau S P, Chai Y, and Tsang Y H 2020 Adv. Mater. 32 2004412
[32] Long M S, Gao A Y, Wang P, Xia H, Ott C, Pan C, Fu Y J, Liu E F, Chen X S, Lu W, Nilges T, Xu J B, XM W, Hu W D, and Miao F 2017 Sci. Adv. 3 e1700589
[33] Ho V X, Wang Y, Cooney M P, and Vinh N Q 2021 Nanoscale 13 10526
[34] Ni Z Y, Ma L L, Du S C, Xu Y, Yuan M, Fang H H, Wang Z, Xu M S, Li D S, Yang J Y, Hu W D, Pi X D, and Yang D R 2017 ACS Nano 11 9854
[35] Chen Y F, Wang Y, Wang Z, Gu Y, Ye Y, Chai X L, Ye J F, Chen Y, Xie R Z, Zhou Y, Hu Z G, Li Q, Zhang L L, Wang F, Wang P, Miao J S, Wang J L, Chen X S, Lu W, Zhou P, and Hu W D 2021 Nat. Electron. 4 357
[36] Li M J, Fu J H, Xu Q, and Sum T C 2019 Adv. Mater. 31 1802486
[37] Li M J, Bhaumik S, Goh T W, Kumar M S, Yantara N, Gratzel M, Mhaisalkar S, Mathews N, and Sum T C 2017 Nat. Commun. 8 14350
Related articles from Frontiers Journals
[1] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 058501
[2] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 058501
[3] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 058501
[4] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 058501
[5] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 058501
[6] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 058501
[7] Xue-Hui Lu, Cheng-Bin Jing, Lian-Wei Wang, Jun-Hao Chu. An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates[J]. Chin. Phys. Lett., 2019, 36(9): 058501
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 058501
[9] Ming Wei, Chun-Xiang Xu, Fei-Fei Qin, Arumugam Gowri Manohari, Jun-Feng Lu, Qiu-Xiang Zhu. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector[J]. Chin. Phys. Lett., 2017, 34(7): 058501
[10] Dong-Wei Jiang, Wei Xiang, Feng-Yun Guo, Hong-Yue Hao, Xi Han, Xiao-Chao Li, Guo-Wei Wang, Ying-Qiang Xu, Qing-Jiang Yu, Zhi-Chuan Niu. Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength[J]. Chin. Phys. Lett., 2016, 33(04): 058501
[11] Yang Li, Sheng-Kai Liao, Fu-Tian Liang, Qi Shen, Hao Liang, Cheng-Zhi Peng. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array[J]. Chin. Phys. Lett., 2016, 33(03): 058501
[12] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 058501
[13] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 058501
[14] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 058501
[15] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 058501
Viewed
Full text


Abstract