Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 058101    DOI: 10.1088/0256-307X/39/5/058101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices
Dong Pan1,2†, Huading Song3,4†, Shan Zhang3†, Lei Liu1, Lianjun Wen1, Dunyuan Liao1, Ran Zhuo1, Zhichuan Wang5, Zitong Zhang3, Shuai Yang3,4, Jianghua Ying3,4, Wentao Miao3, Runan Shang4, Hao Zhang3,4,6*, and Jianhua Zhao1,2*
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China
2Center of Materials Science and Optoelectronics Engineering, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
3State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
4Beijing Academy of Quantum Information Sciences, Beijing 100193, China
5Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
6Frontier Science Center for Quantum Information, Beijing 100084, China
Cite this article:   
Dong Pan, Huading Song, Shan Zhang et al  2022 Chin. Phys. Lett. 39 058101
Download: PDF(7316KB)   PDF(mobile)(9877KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate the in situ growth of ultra-thin InAs nanowires with an epitaxial Al film by molecular-beam epitaxy. Our InAs nanowire diameter ($\sim $30 nm) is much thinner than before ($\sim $100 nm). The ultra-thin InAs nanowires are pure phase crystals for various different growth directions. Transmission electron microscopy confirms an atomically abrupt and uniform interface between the Al shell and the InAs wire. Quantum transport study on these devices resolves a hard induced superconducting gap and 2$e$-periodic Coulomb blockade at zero magnetic field, a necessary step for future Majorana experiments. By reducing wire diameter, our work presents a promising route for reaching fewer sub-band regime in Majorana nanowire devices.
Received: 18 March 2022      Express Letter Published: 01 April 2022
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Gf (Nanowires)  
  74.78.Na (Mesoscopic and nanoscale systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/058101       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/058101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong Pan
Huading Song
Shan Zhang
Lei Liu
Lianjun Wen
Dunyuan Liao
Ran Zhuo
Zhichuan Wang
Zitong Zhang
Shuai Yang
Jianghua Ying
Wentao Miao
Runan Shang
Hao Zhang
and Jianhua Zhao
[1] Lutchyn R M, Sau J D, and Das S S 2010 Phys. Rev. Lett. 105 077001
[2] Oreg Y, Refael G, and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[3] Freedman M H, Kitaev A, Larsen M J, and Wang Z H 2003 Bull. Amer. Math. Soc. 40 31
[4] Read N and Green D 2000 Phys. Rev. B 61 10267
[5] Kitaev A Y 2001 Phys.-Usp. 44 131
[6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[7] Lutchyn R M, Bakkers E P, Kouwenhoven L P, Krogstrup P, Marcus C M, and Oreg Y 2018 Nat. Rev. Mater. 3 52
[8] Zhang H, Liu D E, Wimmer M, and Kouwenhoven L P 2019 Nat. Commun. 10 5128
[9] Prada E, San-Jose P, de Moor M W, Geresdi A, Lee E J, Klinovaja J, Loss D, Nygård J, Aguado R, and Kouwenhoven L P 2020 Nat. Rev. Phys. 2 575
[10] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, and Kouwenhoven L P 2012 Science 336 1003
[11] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, and Xu H Q 2012 Nano Lett. 12 6414
[12] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, and Shtrikman H 2012 Nat. Phys. 8 887
[13] Rokhinson L P, Liu X, and Furdyna J K 2012 Nat. Phys. 8 795
[14] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, and Marcus C M 2013 Phys. Rev. B 87 241401
[15] Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygård J, and Marcus C M 2015 Nat. Nanotechnol. 10 232
[16] Heedt S, Quintero-Pérez M, Borsoi F, Fursina A, van Loo N, Mazur G P, Nowak M P, Ammerlaan M, Li K, Korneychuk S, Shen J, van de An Y P M, Badawy G, Gazibegovic S, de Jong N, Aseev P, van Hoogdalem K, Bakkers E P A M, and Kouwenhoven L P 2021 Nat. Commun. 12 4914
[17] Pendharkar M, Zhang B, Wu H, Zarassi A, Zhang P, Dempsey C P, Lee J S, Harrington S D, Badawy G, Gazibegovic S, Op H V R L M, Rossi M, Jung J, Chen A H, Verheijen M A, Hocevar M, Bakkers E P A M, Palmstrøm C J, and Frolov S M 2021 Science 372 508
[18] Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L, Johnson E, Olsson E, Grove-Rasmussen K, and Nygård J 2021 Nat. Nanotechnol. 16 776
[19] Stanescu T D and Das S S 2013 Phys. Rev. B 87 180504(R)
[20] Takei S, Fregoso B M, Hui H, Lobos A M, and Das S S 2013 Phys. Rev. Lett. 110 186803
[21] Krogstrup P, Ziino N L B, Chang W, Albrecht S M, Madsen M H, Johnson E, Nygård J, Marcus C M, and Jespersen T S 2015 Nat. Mater. 14 400
[22] Kang J H, Grivnin A, Bor E, Reiner J, Avraham N, Ronen Y, Cohen Y, Kacman P, Shtrikman H, and Beidenkopf H 2017 Nano Lett. 17 7520
[23] Carrad D J, Bjergfelt M, Kanne T, Aagesen M, Krizek F, Fiordaliso E M, Johnson E, Nygård J, and Jespersen T S 2020 Adv. Mater. 32 1908411
[24] Vaitiekėnas S, Liu Y, Krogstrup P, and Marcus C M 2021 Nat. Phys. 17 43
[25] Sestoft J E, Kanne T, Gejl A N, von Soosten M, Yodh J S, Sherman D, Tarasinski B, Wimmer M, Johnson E, Deng M T, Nygå R J, Jespersen T S, Marcus C M, and Krogstrup P 2018 Phys. Rev. Mater. 2 044202
[26] Khan S A, Lampadaris C, Cui A, Stampfer L, Liu Y, Pauka S J, Cachaza M E, Fiordaliso E M, Kang J H, Korneychuk S, Mutas T, Sestoft J E, Krizek F, Tanta R, Cassidy M C, Jespersen T S, and Krogstrup P 2020 ACS Nano 14 14605
[27] Vaitiekėnas S, Whiticar A M, Deng M T, Krizek F, Sestoft J E, Palmstrøm C J, Martí-Sánchez S, Arbiol J, Krogstrup P, Casparis L, and Marcus C M 2018 Phys. Rev. Lett. 121 147701
[28] Lee J S, Choi S, Pendharkar M, Pennachio D J, Markman B, Seas M, Koelling S, Verheijen M A, Casparis L, Petersson K D, Petkovic I, Schaller V, Rodwell M J W, Marcus C M, Krogstrup P, Kouwenhoven L P, Bakkers E P A M, and Palmstrøm C J 2019 Phys. Rev. Mater. 3 084606
[29] Stiles M D and Hamann D R 1990 Phys. Rev. B 41 5280
[30] Stiles M D and Hamann D R 1988 Phys. Rev. B 38 2021
[31] Nilsson M, Namazi L, Lehmann S, Leijnse M, Dick K A, and Thelander C 2016 Phys. Rev. B 93 195422
[32] Prada E, San-Jose P, and Aguado R 2012 Phys. Rev. B 86 180503
[33] Kells G, Meidan D, and Brouwer P W 2012 Phys. Rev. B 86 100503
[34] Liu C X, Sau J D, Stanescu T D, and Das S S 2017 Phys. Rev. B 96 075161
[35] Akiyama T, Sano K, Nakamura K, and Ito T 2006 Jpn. J. Appl. Phys. 45 L275
[36] Caroff P, Dick K A, Johansson J, Messing M E, Deppert K, and Samuelson L 2009 Nat. Nanotechnol. 4 50
[37] Shtrikman H, Popovitz-Biro R, Kretinin A, Houben L, Heiblum M, Bukała M, Galicka M, Buczko R, and Kacman P 2009 Nano Lett. 9 1506
[38] Pan D, Fu M Q, Yu X Z, Wang X L, Zhu L J, Nie S H, Wang S L, Chen Q, Xiong P, von Molnár S, and Zhao J H 2014 Nano Lett. 14 1214
[39] Güsken N A, Rieger T, Zellekens P, Bennemann B, Neumann E, Lepsa M I, Schäpers T, and Grützmacher D 2017 Nanoscale 9 16735
[40] Moore C, Stanescu T D, and Tewari S 2018 Phys. Rev. B 97 165302
[41] Vuik A, Nijholt B, Akhmerov A, and Wimmer M 2019 SciPost Phys. 7 61
[42] Antipov A E, Bargerbos A, Winkler G W, Bauer B, Rossi E, and Lutchyn R M 2018 Phys. Rev. X 8 031041
[43] Mikkelsen A E G, Kotetes P, Krogstrup P, and Flensberg K 2018 Phys. Rev. X 8 031040
[44] Woods B D, Stanescu T D, and Das S S 2018 Phys. Rev. B 98 035428
[45] Song H D, Zhang Z T, Pan D, Liu D H, Wang Z Y, Cao Z Y, Liu L, Wen L J, Liao D Y, Zhuo R, Liu D, Shang R N, Zhao J H, and Zhang H 2021 arXiv:2107.08282 [cond-mat.mes-hall]
[46] Fu M Q, Pan D, Yang Y, Shi T, Zhang Z, Zhao J H, Xu H Q, and Chen Q 2014 Appl. Phys. Lett. 105 143101
[47] Li Q, Huang S Y, Pan D, Wang J Y, Zhao J H, and Xu H Q 2014 Appl. Phys. Lett. 105 113106
[48] Wang L B, Guo J K, Kang N, Pan D, Li S, Fan D, Zhao J H, and Xu H Q 2015 Appl. Phys. Lett. 106 173105
[49] Shi T, Fu M Q, Pan D, Guo Y, Zhao J H, and Chen Q 2015 Nanotechnology 26 175202
[50] Fu M Q, Tang Z Q, Li X, Ning Z Y, Pan D, Zhao J H, Wei X L, and Chen Q 2016 Nano Lett. 16 2478
[51] Wang J Y, Huang S Y, Lei Z J, Pan D, Zhao J H, and Xu H Q 2016 Appl. Phys. Lett. 109 53106
[52] Wang L B, Pan D, Huang G Y, Zhao J, Kang N, and Xu H Q 2019 Nanotechnology 30 124001
[53] Gül Ö, Zhang H, de Vries F K, van Veen J, Zuo K, Mourik V, Conesa-Boj S, Nowak M P, van Woerkom D J, Quintero-Pérez M, Cassidy M C, Geresdi A, Koelling S, Car D, Plissard S R, Bakkers E P A M, and Kouwenhoven L P 2017 Nano Lett. 17 2690
[54] Zhang H, Gül Ö, Conesa-Boj S, Nowak M P, Wimmer M, Zuo K, Mourik V, de Vries F K, van Veen J, de Moor M W, Bommer J D S, van Woerkom D J, Car D, Plissard S R, Bakkers E P A M, Quintero-Pérez M, Cassidy M C, Koelling S, Goswami S, Watanabe K, Taniguchi T, and Kouwenhoven L P 2017 Nat. Commun. 8 16025
[55] de Moor M W A, Bommer J D S, Xu D, Winkler G W, Antipov A E, Bargerbos A, Wang G, van Loo N, Op H V R L M, Gazibegovic S, Car D, Logan J A, Pendharkar M, Lee J S, Bakkers E P A M, Palmstrøm C J, Lutchyn R M, Kouwenhoven L P, and Zhang H 2018 New J. Phys. 20 103049
[56] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science 354 1557
[57] Gül Ö, Zhang H, Bommer J D S, de Moor M W A, Car D, Plissard S R, Bakkers E P A M, Geresdi A, Watanabe K, Taniguchi T, and Kouwenhoven L P 2018 Nat. Nanotechnol. 13 192
[58] Lee E J, Jiang X, Houzet M, Aguado R, Lieber C M, and de Franceschi S 2014 Nat. Nanotechnol. 9 79
[59] Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, and Marcus C M 2017 Phys. Rev. Lett. 119 136803
[60] Pientka F, Kells G, Romito A, Brouwer P W, and von Oppen F 2012 Phys. Rev. Lett. 109 227006
[61] Rainis D, Trifunovic L, Klinovaja J, and Loss D 2013 Phys. Rev. B 87 024515
[62] Hekking F W J, Glazman L I, Matveev K A, and Shekhter R I 1993 Phys. Rev. Lett. 70 4138
[63] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, and Marcus C M 2016 Nature 531 206
[64] Chiu C K, Sau J D, and Das S S 2017 Phys. Rev. B 96 054504
[65] Cao Z, Zhang H, Lü H F, He W X, Lu H Z, and Xie X C 2019 Phys. Rev. Lett. 122 147701
[66] Zhang H, de Moor M W A, Bommer J D S, Xu D, Wang G Z, van Loo N, Liu C X, Gazibegovic S, Logan J A, Car D, Op H V R L M, van Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrøm C J, Bakkers E P A M, Das S S, and Kouwenhoven L P 2021 arXiv:2101.11456 [cond-mat.mes-hall]
[67] Das S S and Pan H N 2021 Phys. Rev. B 103 195158
Related articles from Frontiers Journals
[1] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 058101
[2] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 058101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 058101
[4] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 058101
[5] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 058101
[6] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 058101
[7] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 058101
[8] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 058101
[9] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 058101
[10] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 058101
[11] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 058101
[12] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 058101
[13] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 058101
[14] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 058101
[15] Yang Ren, Rui-Ting Hao, Si-Jia Liu, Jie Guo, Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu. High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 058101
Viewed
Full text


Abstract