CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Phase-Locking Diffusive Skin Effect |
Pei-Chao Cao1, Yu-Gui Peng1, Ying Li2,3,4*, and Xue-Feng Zhu1* |
1School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China 2Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China 3International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China 4Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
|
|
Cite this article: |
Pei-Chao Cao, Yu-Gui Peng, Ying Li et al 2022 Chin. Phys. Lett. 39 057801 |
|
|
Abstract We explore the exceptional point (EP) induced phase transition and amplitude/phase modulation in thermal diffusion systems. We start from the asymmetric coupling double-channel model, where the temperature field is unbalanced in the amplitude and locked in the symmetric phase. By extending into the one-dimensional tight-binding non-Hermitian lattice, we study the convection-driven phase locking and the asymmetric-coupling-induced diffusive skin effect with the high-order EPs in static systems. Combining convection and asymmetric couplings, we further show the phase-locking diffusive skin effect. Our work reveals the mechanism of controlling both the amplitude and phase of temperature fields in thermal coupling systems and has potential applications in non-Hermitian topology in thermal diffusion.
|
|
Received: 04 March 2022
Express Letter
Published: 12 April 2022
|
|
PACS: |
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
44.10.+i
|
(Heat conduction)
|
|
|
|
|
[1] | Schittny R, Kadic M, Guenneau S, and Wegener M 2013 Phys. Rev. Lett. 110 195901 |
[2] | Li Y et al. 2021 Nat. Rev. Mater. 6 488 |
[3] | Yang S, Wang J, Dai G, Yang F, and Huang J P 2021 Phys. Rep. 908 1 |
[4] | Yu X et al. 2021 Chin. Phys. Lett. 38 014401 |
[5] | Song Q et al. 2016 Nanoscale 8 14943 |
[6] | Feng H et al. 2019 J. Phys. Chem. C 123 31003 |
[7] | Fan C, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907 |
[8] | Han T, Bai X, Thong J, Li B, and Qiu C W 2014 Adv. Mater. 26 1731 |
[9] | Peng Y G, Li Y, Cao P C, Zhu X F, and Qiu C W 2020 Adv. Funct. Mater. 30 2002061 |
[10] | Li Y et al. 2015 Phys. Rev. Lett. 115 195503 |
[11] | Li Y et al. 2019 Nat. Mater. 18 48 |
[12] | Torrent D, Poncelet O, and Batsale J 2018 Phys. Rev. Lett. 120 125501 |
[13] | Li J et al. 2022 Nat. Commun. 13 167 |
[14] | Li Y, Li J, Qi M, Qiu C W, and Chen H 2021 Phys. Rev. B 103 014307 |
[15] | Xu L, Huang J P, and Ouyang X 2021 Appl. Phys. Lett. 118 221902 |
[16] | Bender C M 2007 Rep. Prog. Phys. 70 947 |
[17] | Zhu X F, Ramezani H, Shi C, Zhu J, and Zhang X 2014 Phys. Rev. X 4 031042 |
[18] | Gu Z et al. 2021 Phys. Rev. Appl. 16 057001 |
[19] | Li Z et al. 2021 Prog. Electromagn. Res. 171 1 |
[20] | Shi C et al. 2016 Nat. Commun. 7 11110 |
[21] | Wang S et al. 2019 Nat. Commun. 10 832 |
[22] | Longhi S, Gatti D, and Valle G D 2015 Phys. Rev. B 92 094204 |
[23] | Li Y et al. 2019 Science 364 170 |
[24] | Cao P C, Li Y, Peng Y G, Qiu C W, and Zhu X F 2020 ES Energy & Environ. 7 48 |
[25] | Xu L, Dai G, Wang G, and Huang J P 2020 Phys. Rev. E 102 032140 |
[26] | Cao P C et al. 2021 Chin. Phys. B 30 030505 |
[27] | Cao P C et al. 2021 Commun. Phys. 4 230 |
[28] | Xu G, Li Y, Li W, Fan S, and Qiu C W 2021 Phys. Rev. Lett. 127 105901 |
[29] | Qi M et al. 2021 arXiv:2107.05231 [physics.app-ph] |
[30] | Xu G, Yang Y, Zhou X et al. 2022 Nat. Phys. (accepted) |
[31] | Yao S and Wang Z 2018 Phys. Rev. Lett. 121 86803 |
[32] | Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 86801 |
[33] | Weidemann S et al. 2020 Science 368 311 |
[34] | Yan Q, Chen H, and Yang Y 2021 Prog. Electromagn. Res. 172 33 |
[35] | Ren J, Hänggi P, and Li B 2010 Phys. Rev. Lett. 104 170601 |
[36] | Ren J, Liu S, and Li B 2012 Phys. Rev. Lett. 108 210603 |
[37] | Wang Z et al. 2022 Front. Phys. 17 13201 |
[38] | Wiersig J 2014 Phys. Rev. Lett. 112 203901 |
[39] | Mostafavi F et al. 2020 Phys. Rev. Res. 2 032057 |
[40] | Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|