Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 057801    DOI: 10.1088/0256-307X/39/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Phase-Locking Diffusive Skin Effect
Pei-Chao Cao1, Yu-Gui Peng1, Ying Li2,3,4*, and Xue-Feng Zhu1*
1School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
2Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
3International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
4Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
Cite this article:   
Pei-Chao Cao, Yu-Gui Peng, Ying Li et al  2022 Chin. Phys. Lett. 39 057801
Download: PDF(1900KB)   PDF(mobile)(2023KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We explore the exceptional point (EP) induced phase transition and amplitude/phase modulation in thermal diffusion systems. We start from the asymmetric coupling double-channel model, where the temperature field is unbalanced in the amplitude and locked in the symmetric phase. By extending into the one-dimensional tight-binding non-Hermitian lattice, we study the convection-driven phase locking and the asymmetric-coupling-induced diffusive skin effect with the high-order EPs in static systems. Combining convection and asymmetric couplings, we further show the phase-locking diffusive skin effect. Our work reveals the mechanism of controlling both the amplitude and phase of temperature fields in thermal coupling systems and has potential applications in non-Hermitian topology in thermal diffusion.
Received: 04 March 2022      Express Letter Published: 12 April 2022
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/057801       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/057801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pei-Chao Cao
Yu-Gui Peng
Ying Li
and Xue-Feng Zhu
[1] Schittny R, Kadic M, Guenneau S, and Wegener M 2013 Phys. Rev. Lett. 110 195901
[2] Li Y et al. 2021 Nat. Rev. Mater. 6 488
[3] Yang S, Wang J, Dai G, Yang F, and Huang J P 2021 Phys. Rep. 908 1
[4] Yu X et al. 2021 Chin. Phys. Lett. 38 014401
[5] Song Q et al. 2016 Nanoscale 8 14943
[6] Feng H et al. 2019 J. Phys. Chem. C 123 31003
[7] Fan C, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907
[8] Han T, Bai X, Thong J, Li B, and Qiu C W 2014 Adv. Mater. 26 1731
[9] Peng Y G, Li Y, Cao P C, Zhu X F, and Qiu C W 2020 Adv. Funct. Mater. 30 2002061
[10] Li Y et al. 2015 Phys. Rev. Lett. 115 195503
[11] Li Y et al. 2019 Nat. Mater. 18 48
[12] Torrent D, Poncelet O, and Batsale J 2018 Phys. Rev. Lett. 120 125501
[13] Li J et al. 2022 Nat. Commun. 13 167
[14] Li Y, Li J, Qi M, Qiu C W, and Chen H 2021 Phys. Rev. B 103 014307
[15] Xu L, Huang J P, and Ouyang X 2021 Appl. Phys. Lett. 118 221902
[16] Bender C M 2007 Rep. Prog. Phys. 70 947
[17] Zhu X F, Ramezani H, Shi C, Zhu J, and Zhang X 2014 Phys. Rev. X 4 031042
[18] Gu Z et al. 2021 Phys. Rev. Appl. 16 057001
[19] Li Z et al. 2021 Prog. Electromagn. Res. 171 1
[20] Shi C et al. 2016 Nat. Commun. 7 11110
[21] Wang S et al. 2019 Nat. Commun. 10 832
[22] Longhi S, Gatti D, and Valle G D 2015 Phys. Rev. B 92 094204
[23] Li Y et al. 2019 Science 364 170
[24] Cao P C, Li Y, Peng Y G, Qiu C W, and Zhu X F 2020 ES Energy & Environ. 7 48
[25] Xu L, Dai G, Wang G, and Huang J P 2020 Phys. Rev. E 102 032140
[26] Cao P C et al. 2021 Chin. Phys. B 30 030505
[27] Cao P C et al. 2021 Commun. Phys. 4 230
[28] Xu G, Li Y, Li W, Fan S, and Qiu C W 2021 Phys. Rev. Lett. 127 105901
[29] Qi M et al. 2021 arXiv:2107.05231 [physics.app-ph]
[30] Xu G, Yang Y, Zhou X et al. 2022 Nat. Phys. (accepted)
[31] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 86803
[32] Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 86801
[33] Weidemann S et al. 2020 Science 368 311
[34] Yan Q, Chen H, and Yang Y 2021 Prog. Electromagn. Res. 172 33
[35] Ren J, Hänggi P, and Li B 2010 Phys. Rev. Lett. 104 170601
[36] Ren J, Liu S, and Li B 2012 Phys. Rev. Lett. 108 210603
[37] Wang Z et al. 2022 Front. Phys. 17 13201
[38] Wiersig J 2014 Phys. Rev. Lett. 112 203901
[39] Mostafavi F et al. 2020 Phys. Rev. Res. 2 032057
[40] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 057801
[2] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 057801
[3] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 057801
[4] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 057801
[5] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 057801
[6] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 057801
[7] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 057801
[8] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 057801
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 057801
[10] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 057801
[11] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 057801
[12] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 057801
[13] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 057801
[14] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 057801
[15] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 057801
Viewed
Full text


Abstract